scholarly journals Switching Arc Energy Limitation Approach for LV Circuit Breakers

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6774
Author(s):  
Dariusz Smugala ◽  
Michal Bonk

This paper presents an experimentally verified approach to deriving switching arc energy limitations for low-voltage (LV) circuit breakers (CBs). Air-insulated contactors equipped with additional vacuum-insulated (VI) arcing contacts were tested for AC and DC current interruption efficiency, respectively. In the study, the contact arrangements of reed relay VI contact switches of low current breaking capacity combined with air-insulated contactors were examined. Tests were performed on selected LV CBs inductively loaded for LV power network rated voltages. A comparative analysis of the arc energy resulting from various arc time durations recorded during the switching-off operation was performed. Using a variety of either basic CB air-insulated contact systems or combined contact systems, a practical assessment of the proposed idea for enhancing the arc quenching efficiency was undertaken. As a result of the implementation of the proposed idea, the arc burning duration time was indicated as being hundreds of times shorter. In most cases, a complete arc reduction was achieved. Moreover, the resulting arc energy dissipation during the breaking operation was substantially minimized. Consequently, a significant increase in the total current breaking capacity of the tested CBs was achieved.

1997 ◽  
Vol 33 (5) ◽  
pp. 1372
Author(s):  
P. O'Donnell ◽  
W.F. Braun ◽  
C.R. Heising ◽  
P.P. Khera ◽  
M. Kornblit ◽  
...  

2010 ◽  
Vol 25 (1) ◽  
pp. 206-211 ◽  
Author(s):  
A. Balestrero ◽  
L. Ghezzi ◽  
M. Popov ◽  
L. van der Sluis

Vestnik MGTU ◽  
2020 ◽  
Vol 23 (4) ◽  
pp. 345-353
Author(s):  
E. I. Gracheva ◽  
A. N. Gorlov ◽  
A. N. Alimova

Determination of the main characteristics of the topology and technical condition of equipment underoperating conditions is necessary for analyzing and assessing power and electricity losses in intrashoplow-voltage industrial power supply networks. A comparative analysis of the technical characteristicsof automatic circuit breakers VA57-31 (KEAZ), NSX100 TM-D (Schneider Electric), DPX3 160 (Legrand), Tmax XT1 TMD (ABB) has shown that the main technical parameters of the machines are close in their values. At that it has been found out that automatic switches of the BA57-31 series have the lowest value of power losses per pole (7.5 W), whereas the automatic switches of the Tmax XT1 TMD series have the highest value (10 W). Thus, under the operating conditions of the equipment, the lowest value of power and electricity losses is characteristic of low-voltage electrical networks with installed circuit breakers of the BA57-31 series, and the highest value of losses is noted in in-shop systems with installed circuit breakers Tmax XT1 TMD. Using catalog data, the dependences of active power losses in circuit breakers on rated currents have been established; the algorithms have been developed and the obtained dependences have been modeled using approximating functions. The standard deviation of the compiled approximating functions has been calculated. Analytical expressions of the dynamics of power losses per pole have been determined as a function of the rated current. The graphical dependences of the investigated parameters of low-voltage equipment have been presented. The developed models are recommended to be used to increase the reliability of the assessment and refinement of the amount of active power and electricity losses in low-voltage electrical networks of industrial power supply systems, agrotechnical complexes, and enterprises of the public utility sector.


Author(s):  
Jutta Rohberg ◽  
Thomas Honig ◽  
Norbert Witulski ◽  
Michael Finkbeiner ◽  
Volker Behrens

Sign in / Sign up

Export Citation Format

Share Document