scholarly journals Reduced Scale Experimental Modelling of Distributed Thermal Response Tests for the Estimation of the Ground Thermal Conductivity

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6955
Author(s):  
Stefano Morchio ◽  
Marco Fossa ◽  
Antonella Priarone ◽  
Alessia Boccalatte

The knowledge of the ground thermal properties, and in particular the ground thermal conductivity is fundamental for the correct sizing of the Ground Coupled Heat Pump (GCHP) plant. The Thermal Response Test (TRT) is the most used experimental technique for estimating the ground thermal conductivity. This paper presents an experimental setup aimed to realise a suitable scale prototype of the real borehole heat exchanger (BHE) and the surrounding ground for reduced scale TRT experiments. The scaled ground volume is realised with a slate block. Numerical analyses were carried out to correctly determine suitable geometric and operational parameters for the present setup. The scaled heat exchanger, inserted into the block, is created with additive technology (3D printer) and equipped with a central electrical heater along its entire depth and with temperature sensors at different radial distances and depths. Present measurements highlight the possibility to reliably perform a TRT experiment and to estimate the slate/ground thermal conductivity with an agreement of about +12% with respect to measurements provided by a standard commercial conductivity meter on proper cylindrical samples of the same material and onto 10 different portions of the slate block.

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3737
Author(s):  
Aneta Sapińska-Śliwa ◽  
Tomasz Sliwa ◽  
Kazimierz Twardowski ◽  
Krzysztof Szymski ◽  
Andrzej Gonet ◽  
...  

This work concerns borehole heat exchangers and their testing using apparatus for thermal response tests. In the theoretical part of the article, an equation was derived from the known equation of heat flow, on which the interpretation of the thermal response test was based. The practical part presents the results of several measurements taken in the AGH Laboratory of Geoenergetics. They were aimed at examining the potential heat exchange capacity between the heat carrier and rock mass. Measurement results in the form of graphs are shown in relation to the examined, briefly described wells. Result analysis made it possible to draw conclusions regarding the interpretation of the thermal response test. The method of averaging the measurement results was subjected to further study. The measuring apparatus recorded data at a frequency of one second, however such accuracy was too large to be analyzed efficiently. Therefore, an average of every 1 min, every 10 min, and every 60 min was proposed. The conclusions stemming from the differences in the values of effective thermal conductivity in the borehole heat exchanger, resulting from different data averaging, were described. In the case of three borehole heat exchangers, ground properties were identical. The effective thermal conductivity λeff was shown to depend on various borehole heat exchanger (BHE) designs, heat carrier flow geometry, and grout parameters. It is important to consider the position of the pipes relative to each other. As shown in the charts, the best (the highest) effective thermal conductivity λeff occurred in BHE-1 with a coaxial construction. At the same time, this value was closest to the theoretical value of thermal conductivity of rocks λ, determined on the basis of literature. The standard deviation and the coefficient of variation confirmed that the effective thermal conductivity λeff, calculated for different time intervals, showed little variation in value. The values of effective thermal conductivity λeff for each time interval for the same borehole exchanger were similar in value. The lowest values of effective thermal conductivity λeff most often appeared for analysis with averaging every 60 min, and the highest—for analysis with averaging every 1 min. For safety reasons, when designing (number of BHEs), safer values should be taken for analysis, i.e., lower, averaging every 60 min.


2020 ◽  
Author(s):  
Linda Schindler ◽  
Sascha Wilke ◽  
Simon Schüppler ◽  
Christina Fliegauf ◽  
Hanne Karrer ◽  
...  

<p>The thermal conductivity of the subsurface is a fundamental parameter for the design of borehole heat exchangers in shallow geothermal energy systems. An average thermal conductivity value is usually assumed. Under real conditions, however, the thermal conductivity at depth can vary considerably depending on the local petrophysical and mineralogical properties of the subsurface (e.g. porosity). Hence, the aim of this study was to compare these properties of the subsurface with the thermal conductivities measured in the laboratory and in the field and to highlight possible correlations. For this purpose, a test field was established in the northern Black Forest (Germany) by obtaining an undisturbed drilling core of about 100 m length from sandstone of the Middle to Upper Buntsandstein formation and then installing a borehole heat exchanger (BHE). Various rock parameters were determined in the laboratory on 160 selected samples of the drilling core. Among other parameters, thermal conductivities under saturated and unsaturated conditions were measured and compared with values determined by depth-resolved classical and enhanced thermal response tests in the borehole heat exchanger (TRT). Furthermore, the porosity, permeability, grain density and pore diameter as well as mineralogical composition of the sandstone were intensively studied in the laboratory. The results do not show clear correlations between thermal conductivity, permeability and density. In contrast to those reported in literature, our results indicate a moderate correlation between porosity and thermal conductivity and a more pronounced dependence on grain size.</p><p>With regard to the depth profile of the thermal conductivity, the results between laboratory and field measurements were mainly consistent. The highest thermal conductivities (4.3 W/mK in the laboratory and 4.5 W/mK in the field) confirm the suitability of the Upper and Middle Buntsandstein formation for shallow geothermal installations. Most of these rocks represent typical fluvial deposits, so that the results obtained can be easily transferred to other regions with similar sandstone deposits.</p>


2017 ◽  
Vol 25 (01) ◽  
pp. 1750006 ◽  
Author(s):  
Keun Sun Chang ◽  
Min Jun Kim ◽  
Young Jae Kim

In recent years, application of the standing column well (SCW) ground heat exchanger (GHX) has been noticeably increased as a heat transfer mechanism of ground source heat pump (GSHP) systems with its high heat capacity and efficiency. Determination of the ground thermal properties is an important task for sizing and estimating cost of the GHX. In this study, an in situ thermal response test (TRT) is applied to the thermal performance evaluation of SCW. Two SCWs with different design configurations are installed in sequence to evaluate their effects on the thermal performance of SCW using a single borehole. A line source method is used to derive the effective thermal conductivity and borehole thermal resistance. Effects of operating parameters are also investigated including bleed, heat injection rate, flow rate and filler height. Results show that the effective thermal conductivity of top drawn SCW (Type A) is 11.7% higher than that of bottom drawn SCW (Type B) and of operating parameters tested bleed is the most significant one for the improvement of the thermal performance (40.4% enhanced in thermal conductivity with 10.9% bleed).


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3059 ◽  
Author(s):  
Maria Vélez Márquez ◽  
Jasmin Raymond ◽  
Daniela Blessent ◽  
Mikael Philippe ◽  
Nataline Simon ◽  
...  

Thermal response tests are used to assess the subsurface thermal conductivity to design ground-coupled heat pump systems. Conventional tests are cumbersome and require a source of high power to heat water circulating in a pilot ground heat exchanger. An alternative test method using heating cable was verified in the field as an option to conduct this heat injection experiment with a low power source and a compact equipment. Two thermal response tests using heating cable sections and a continuous heating cable were performed in two experimental heat exchangers on different sites in Canada and France. The temperature evolution during the tests was monitored using submersible sensors and fiber optic distributed temperature sensing. Free convection that can occur in the pipe of the heat exchanger was evaluated using the Rayleigh number stability criterion. The finite and infinite line source equations were used to reproduce temperature variations along the heating cable sections and continuous heating cable, respectively. The thermal conductivity profile of each site was inferred and the uncertainly of the test was evaluated. A mean thermal conductivity 15% higher than that revealed with the conventional test was estimated with heating cable sections. The thermal conductivity evaluated using the continuous heating cable corresponds to the value estimated during the conventional test. The average uncertainly associated with the heating cable section test was 15.18%, while an uncertainty of 2.14% was estimated for the test with the continuous heating cable. According to the Rayleigh number stability criterion, significant free convection can occur during the heat injection period when heating cable sections are used. The continuous heating cable with a low power source is a promising method to perform thermal response tests and further tests could be carried out in deep boreholes to verify its applicability.


2020 ◽  
Vol 205 ◽  
pp. 06015
Author(s):  
Yaser Motamedi ◽  
Nikolas Makasis ◽  
Arul Arulrajah ◽  
Suksun Horpibulsuk ◽  
Guillermo Narsilio

Shallow geothermal energy utilises the ground at relatively shallow depths as a heat source or sink to efficiently heat and cool buildings. Geothermal pavement systems represent a novel concept where horizontal ground source heat pump systems (GSHP) are implemented in pavements instead of purpose-built trenches, thus reducing their capital costs. This paper presents a geothermal pavement system segment (20m × 10m) constructed and monitored in the city of Adelaide, Australia, as well as thermal response testing (TRT) results. Pipes have been installed in the pavement at 0.5 m depth, and several thermistors have been placed on the pipes and in the ground. A TRT has been performed with 6kW heating load to achieve an understanding of the thermal response of the system as well as to estimate the effective thermal conductivity of the ground. The results show that the conventional semi-log method may be applicable to determine the thermal conductivity for geothermal pavements. The geothermal heat exchanger at shallow depth is considerably under the influence of the ambient temperature; however, it is still acceptable for exchanging the heat within the ground. It is also concluded that the impact radius of heat exchanger in geothermal pavement during the TRT is around 0.5m in the vertical and horizontal directions for this case study.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5471
Author(s):  
Peng Li ◽  
Peng Guan ◽  
Jun Zheng ◽  
Bin Dou ◽  
Hong Tian ◽  
...  

Ground thermal properties are the design basis of ground source heat pumps (GSHP). However, effective ground thermal properties cannot be obtained through the traditional thermal response test (TRT) method when it is used in the coaxial borehole heat exchanger (CBHE). In this paper, an improved TRT (ITRT) method for CBHE is proposed, and the field ITRT, based on the actual project, is carried out. The high accuracy of the new method is verified by laboratory experiments. Based on the results of the ITRT and laboratory experiment, the 3D numerical model for CBHE is established, in which the flow directions, sensitivity analysis of heat transfer characteristics, and optimization of circulation flow rate are studied, respectively. The results show that CBHE should adopt the anulus-in direction under the cooling condition, and the center-in direction under the heating condition. The influence of inlet temperature and flow rate on heat transfer rate is more significant than that of the backfill grout material, thermal conductivity of the inner pipe, and borehole depth. The circulating flow rate of CBHE between 0.3 m/s and 0.4 m/s can lead to better performance for the system.


2021 ◽  
Author(s):  
Jan Niederau ◽  
Johanna Fink ◽  
Moritz Lauster

<p>The actual heat demand of a building depends on various building-specific parameters, such as building age, insulation type, housing volume, but also external parameters, e.g. outdoor temperature. Being able to dynamically model the thermal power demand of a specific building can increase the robustness of coupled borehole heat exchanger simulations (BHE-simulations), as the transient heat demand models of a building / consumer can be used to simulate the thermal response of the subsurface to the prescribed consumer demand.</p><p>We present results of coupling results of Building Performance Simulation (BPS) with simulations of Borehole Heat Exchangers. BPS are carried out using TEASER (Tool for Energy Analysis and Simulation for Efficient Retrofit) which models the thermal power demand of a building based on parameters, such as year of construction, net-lease area, and outdoor-temperature.</p><p>Using annual temperature curves, we model the thermal power demand of buildings from the 1950s, once in original state and in retrofitted state. The thermal response of a connected BHE-field is simulated using SHEMAT-Suite, an open-source simulator for heat- and mass-transfer in porous media. In our BHE simulations, thermal plumes develop as a result of heat-extraction and regional groundwater flow.</p><p>To improve the forecast of, e.g. the magnitude of these plumes, realistic knowledge of the heat demand is important, which can be achieved by the presented coupling of BPS- and BHE-modelling.</p><p><span> </span></p>


Sign in / Sign up

Export Citation Format

Share Document