scholarly journals Scalable Microgrid Process Model: The Results of an Off-Grid Household Experiment

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7139
Author(s):  
Sylwia Sysko-Romańczuk ◽  
Grzegorz Kluj ◽  
Liliana Hawrysz ◽  
Łukasz Rokicki ◽  
Sylwester Robak

The security of national energy systems as well as the transition to a low-carbon future are two hot topics of discussion in the international political arena. Research on the stability of centralized energy systems is currently focused on distributed generation. Developing a scalable microgrid model enabling its massive adoption is one of the safest and feasible ways to solve such problem. The paper aims to fill an existing gap regarding the operation model of microgrids that is a barrier for the large-scale integration of those in the conventional grid network. In the proposed approach the authors identified key processes to be considered when operating microgrids, in the conditions shown through an experimental (simulation) campaign. A three-phase research was performed: (1) systematic literature review to explore the management models of a stand-alone microgrid design and management; (2) a household experiment; and (3) a computer simulation of energy balance for a selected household. We identified eight key processes constituting a scalable microgrid: five core processes, two supporting processes, and one management process. Subsequently, we developed a map of these processes obtaining a microgrid process model for massive adoption. The model of processes can be considered as a repeatable pattern of conduct in the creation and maintenance of microgrids, which their future owners can follow. To support our literature findings, we performed an experiment and a computer simulation of three sub-processes of the (re)design of the infrastructure process: (1) wind turbine selection, (2) photovoltaic power plant selection, and (3) energy-storage selection. Results confirm conditional stability of the analyzed microgrid and the need for cyclical simulation exercises until unconditional stability is achieved. In terms of sustainability, to keep the microgrid permanently in a positive energy balance will require the implementation of all key processes.

2021 ◽  
Vol 3 ◽  
Author(s):  
Amber Nordholm ◽  
Siddharth Sareen

The threats climate change poses require rapid and wide decarbonization efforts in the energy sector. Historically, large-scale energy operations, often instrumental for a scaled and effective approach to meet decarbonization goals, undergird energy-related injustices. Energy poverty is a multi-dimensional form of injustice, with relevance to low-carbon energy transitions. Defined as the condition of being unable to access an adequate level of household energy services, energy poverty persists despite the emergence of affordable renewable energy technologies, such as solar photovoltaics (PV). Historical injustices and the modularity of solar PV combine to offer new possibilities in ownership, production and distribution of cost-competitive, clean and collectively scalable energy. Consequently, emerging policy priorities for positive energy districts call into question the traditional large-scale modality of energy operations. We report from a case study of solar power in Lisbon, a frontrunner in urban energy transitions while also home to high energy poverty incidence. The study focuses on scalar aspects of justice in energy transitions to investigate whether and how solar PV can alleviate urban energy poverty. It features 2 months of fieldwork centered on community and expert perspectives, including semi-structured interviews and field observations. We mobilize a spatial energy justice framework to identify justice aspects of multi-scalar solar PV uptake. By showing how energy justice is shaped in diverse ways at different scales, we demonstrate ways in which scale matters for just urban energy transitions. We argue that small- and medium-scaled approaches to electricity distribution, an integral component of positive energy districts, can address specific justice concerns. However, even as such approaches gain attention and legitimacy, they risk structurally excluding socio-economically vulnerable users, and proceed slowly relative to large-scale solar rollout.


Author(s):  
Sara Bellocchi ◽  
Kai Klöckner ◽  
Michele Manno ◽  
Michel Noussan ◽  
Michela Vellini

Electric vehicles, being able to reduce pollutant and greenhouse gas emissions and shift the economy away from oil products, can play a major role in the transition towards low-carbon energy systems. However, the related increase in electricity demand inevitably affects the strategic planning of the overall energy system as well as the definition of the optimal power generation mix. With this respect, the impact of electric vehicles may vary significantly depending on the composition of both total primary energy supply and electricity generation. In this study, Italy and Germany are compared to highlight how a similarity in their renewable shares not necessarily leads to a CO2 emissions reduction. Different energy scenarios are simulated with the help of EnergyPLAN software assuming a progressive increase in renewable energy sources capacity and electric vehicles penetration. Results show that, for the German case, the additional electricity required leads to a reduction in CO2 emissions only if renewable capacity increases significantly, whereas the Italian energy system benefits from transport electrification even at low renewable capacity. Smart charging strategies are also found to foster renewable integration; however, power curtailments are still significant at high renewable capacity in the absence of large-scale energy storage systems.


2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


Sign in / Sign up

Export Citation Format

Share Document