scholarly journals Design and Modelling of Eco-Friendly CH3NH3SnI3-Based Perovskite Solar Cells with Suitable Transport Layers

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7200
Author(s):  
M. Mottakin ◽  
K. Sobayel ◽  
Dilip Sarkar ◽  
Hend Alkhammash ◽  
Sami Alharthi ◽  
...  

An ideal n-i-p perovskite solar cell employing a Pb free CH3NH3SnI3 absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH3NH3SnI3 absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in Voc, PCE decreases with temperature. Defect tolerance limit for IL1 is 1013 cm−3, 1016 cm−3 and 1012 cm−3 for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 1014 cm−3. With the proposed device structure FTO/PCBM/CH3NH3SnI3/CuO shows the maximum efficiency of 25.45% (Voc = 0.97 V, Jsc = 35.19 mA/cm2, FF = 74.38%), for the structure FTO/TiO2/CH3NH3SnI3/CuO the best PCE is obtained 26.92% (Voc = 0.99 V, Jsc = 36.81 mA/cm2, FF = 73.80%) and device structure of FTO/WO3/CH3NH3SnI3/CuO gives the maximum efficiency 24.57% (Voc = 0.90 V, Jsc = 36.73 mA/cm2, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO2/CH3NH3SnI3/CuO system provides better performance and better defect tolerance capacity.

Author(s):  
U.C. Obi ◽  
D.M. Sanni ◽  
A. Bello

Theoretical study of methyl-ammonium bismuth halide perovskite solar cells, (CH3NH3)3Bi2I9, was carried out using a one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. The performance of the tested device architectures largely depends on the thickness of the absorbing layer, with the combination of electron transport, and hole transport layers. Thus, the bismuth perovskite absorber layer was optimized by varying the thickness and also, the thicknesses of the different charge-transport materials such as Spiro-OmeTAD, copper (I) oxide (Cu2O), and copper (I) iodide (CuI) as hole transport layer (HTL), and phenyl-C61-butyric acid methyl ester (PCBM), poly(3-hexylthiophene-2,5-diyl) (P3HT), zinc oxide, and titanium dioxide as electron transport layer (ETL). The best performance in terms of the power conversion efficiency (PCE) was recorded for the device with Cu2O as the HTL and ZnO as the ETL with the absorber layer thickness of 200 nm. The working temperature of the device was varied from 295 to 320 K and the effects of temperature on various device architectures were investigated. Results obtained indication that the efficiency of the bismuth perovskite solar cells can be improved by optimizing the thickness of the absorber layer and utilizing an appropriate combination of HTLs and ETLs. Keywords: methyl-ammonium bismuth perovskite, SCAPS, HTL, ETL, PCE.


2018 ◽  
Vol 6 (29) ◽  
pp. 14255-14261 ◽  
Author(s):  
Huan Li ◽  
Guoqing Tong ◽  
Taotao Chen ◽  
Hanwen Zhu ◽  
Guopeng Li ◽  
...  

A derivative-phase CsPb2Br5 is introduced into inorganic perovskite solar cells, which will effectively eliminate interface defects, lower the energy barrier of electron transport layer and suppress the recombination at the interface of hole transport layer in the devices.


2021 ◽  
Vol 24 (3) ◽  
pp. 341-347
Author(s):  
K. Bhavsar ◽  
◽  
P.B. Lapsiwala ◽  

Perovskite solar cells have become a hot topic in the solar energy device area due to high efficiency and low cost photovoltaic technology. However, their function is limited by expensive hole transport material (HTM) and high temperature process electron transport material (ETM) layer is common device structure. Numerical simulation is a crucial technique in deeply understanding the operational mechanisms of solar cells and structure optimization for different devices. In this paper, device modelling for different perovskite solar cell has been performed for different ETM layer, namely: TiO2, ZnO, SnO2, PCBM (phenyl-C61-butyric acid methyl ester), CdZnS, C60, IGZO (indium gallium zinc oxide), WS2 and CdS and effect of band gap upon the power conversion efficiency of device as well as effect of absorber thickness have been examined. The SCAPS 1D (Solar Cell Capacitance Simulator) has been a tool used for numerical simulation of these devices.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022011
Author(s):  
Rui Huang ◽  
Jiyu Tang

Abstract Perovskite solar cells have attracted the attention of the researchers in the last couple of years as a potential photovoltaic device. However, the use of expensive hole transport materials (HTM) in these devices often restricts their commercial adaptability. Thus exploring cost-effective, efficient HTL and ETL materials remain an important challenge to the researchers. In this work, simulation studies are carried out considering cupric oxide (CuO), a relatively inexpensive material as hole transport materials for planar heterojunction perovskite solar cells. The photo-voltaic performance of CuO based hole transport layer (HTL) has been estimated in combination with several electron transport materials (ETM) that include TiO2,SnO2,ZnO, CdS, ZnSe,PCBM and Cd1-xZnxS. Studies predict that among these materials, the Cd1-xZnxS electron transport layer (ETL) could be the most promising to result high photo-voltaic efficiency in combination to CuO based HTL. Also, the thickness and optical band gap of perovskite absorber are optimized in order to achieve maximum photo-voltaic efficiency. The cell efficiency of FTO / Cd1-xZnxS/CH3NH3PbI3/CuO/carbon structure is predicted 25.24% under optimized operational conditions with Voc, Jsc and Fill Factor of 1.1eV,26.32mA/cm2 and 87.14% respectively.


2021 ◽  
Vol 34 (1) ◽  
pp. 58-63
Author(s):  
Naman Shukla ◽  
Dharamlal Prajapati ◽  
Sanjay Tiwari

Perovskite solar cells fabricated with inexpensive and simple technology exhibits high efficiency has witnessed worldwide boom in research. The optimization of solar cell can be done through modeling and simulation. The optical and electrical modeling are the ways to optimize different parameter such as thickness, defect density, doping density and material selection for fabricating stable and highly efficient perovskite solar cells. In this research work, electrical modeling of solar cell is done throughSolar Cell Capacitance Simulator(SCAPS-1D).The architecture of the solar cell is n-i-p device structure. CH3NH3PbI3-xClx acts as light absorber active layer, TiO2 as electron transport layer and Spiro-OMeTADas hole transport layer with device structure FTO/ TiO2/ CH3NH3PbI3-xClx/ Spiro-OMeTAD/Au. The open circuit voltage Voc, short circuit current density Isc, fill factor and power conversion efficiency are 1.28 V, 21.63 mA/cm2, 0.78 and 21.53% respectively. The result showed that the optimize parameter can be applied for fabrication of the solar cell experimentally. Various metal contact materials of the anodeare also studied and analyzed.


2020 ◽  
Vol 1 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Meiying Zhang ◽  
Fengmin Wu ◽  
Dan Chi ◽  
Keli Shi ◽  
Shihua Huang

Hybrid organic–inorganic perovskites have attracted intensive attention as the absorber layer in high-performance perovskite solar cells (PSCs).


Sign in / Sign up

Export Citation Format

Share Document