scholarly journals Effect of Absorber Layer Thickness on the Performance of Bismuth-Based Perovskite Solar Cells

Author(s):  
U.C. Obi ◽  
D.M. Sanni ◽  
A. Bello

Theoretical study of methyl-ammonium bismuth halide perovskite solar cells, (CH3NH3)3Bi2I9, was carried out using a one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. The performance of the tested device architectures largely depends on the thickness of the absorbing layer, with the combination of electron transport, and hole transport layers. Thus, the bismuth perovskite absorber layer was optimized by varying the thickness and also, the thicknesses of the different charge-transport materials such as Spiro-OmeTAD, copper (I) oxide (Cu2O), and copper (I) iodide (CuI) as hole transport layer (HTL), and phenyl-C61-butyric acid methyl ester (PCBM), poly(3-hexylthiophene-2,5-diyl) (P3HT), zinc oxide, and titanium dioxide as electron transport layer (ETL). The best performance in terms of the power conversion efficiency (PCE) was recorded for the device with Cu2O as the HTL and ZnO as the ETL with the absorber layer thickness of 200 nm. The working temperature of the device was varied from 295 to 320 K and the effects of temperature on various device architectures were investigated. Results obtained indication that the efficiency of the bismuth perovskite solar cells can be improved by optimizing the thickness of the absorber layer and utilizing an appropriate combination of HTLs and ETLs. Keywords: methyl-ammonium bismuth perovskite, SCAPS, HTL, ETL, PCE.

2021 ◽  
Vol 24 (3) ◽  
pp. 341-347
Author(s):  
K. Bhavsar ◽  
◽  
P.B. Lapsiwala ◽  

Perovskite solar cells have become a hot topic in the solar energy device area due to high efficiency and low cost photovoltaic technology. However, their function is limited by expensive hole transport material (HTM) and high temperature process electron transport material (ETM) layer is common device structure. Numerical simulation is a crucial technique in deeply understanding the operational mechanisms of solar cells and structure optimization for different devices. In this paper, device modelling for different perovskite solar cell has been performed for different ETM layer, namely: TiO2, ZnO, SnO2, PCBM (phenyl-C61-butyric acid methyl ester), CdZnS, C60, IGZO (indium gallium zinc oxide), WS2 and CdS and effect of band gap upon the power conversion efficiency of device as well as effect of absorber thickness have been examined. The SCAPS 1D (Solar Cell Capacitance Simulator) has been a tool used for numerical simulation of these devices.


Polymers ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 147 ◽  
Author(s):  
Mao Jiang ◽  
Qiaoli Niu ◽  
Xiao Tang ◽  
Heyi Zhang ◽  
Haowen Xu ◽  
...  

The commonly used electron transport material (6,6)-phenyl-C61 butyric acid methyl ester (PCBM) for perovskite solar cells (PSC) with inverted planar structures suffers from properties such as poor film-forming. In this manuscript, we demonstrate a simple method to improve the film-forming properties of PCBM by doping PCBM with poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) as the electron transport layer (ETL), which effectively enhances the performance of CH3NH3PbI3 based solar cells. With 5 wt % F8BT in PCBM, the short circuit current (JSC) and fill factor (FF) of PSC both significantly increased from 17.21 ± 0.15 mA·cm−2 and 71.1 ± 0.07% to 19.28 ± 0.22 mA·cm−2 and 74.7 ± 0.21%, respectively, which led to a power conversion efficiency (PCE) improvement from 12.6 ± 0.24% to 15 ± 0.26%. The morphology investigation suggested that doping with F8BT facilitated the formation of a smooth and uniform ETL, which was favorable for the separation of electron-hole pairs, and therefore, an improved performance of PSC.


2018 ◽  
Vol 6 (29) ◽  
pp. 14255-14261 ◽  
Author(s):  
Huan Li ◽  
Guoqing Tong ◽  
Taotao Chen ◽  
Hanwen Zhu ◽  
Guopeng Li ◽  
...  

A derivative-phase CsPb2Br5 is introduced into inorganic perovskite solar cells, which will effectively eliminate interface defects, lower the energy barrier of electron transport layer and suppress the recombination at the interface of hole transport layer in the devices.


Coatings ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 237
Author(s):  
Chih-Hung Tsai ◽  
Chia-Ming Lin ◽  
Cheng-Hao Kuei

In this study, four organic solvents including 1,2-dichlorobenzene (DCB), chlorobenzene (CB), methylbenzene (MB), and chloroform (CF) were used as solvents in the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer (ETL) of perovskite solar cells (PSCs). This study observed the effects of various solvents on the surface morphology of the ETL by using an optical microscope (OM) and scanning electron microscope (SEM). The surface roughness, crystal structure, and surface element bonding of the ETL were observed using an atomic force microscope (AFM), X-ray diffractometer (XRD), and X-ray photoelectron spectroscope (XPS), respectively. The absorption spectrum of the perovskite layer was explored using an ultraviolet-visible (UV-Vis) spectrometer. The characteristics of the PSC device were analyzed in terms of its current density–voltage (J–V) curve, external quantum efficiency (EQE), and electrochemical impedance spectroscopy (EIS) measurements. The results showed that DCB is a solvent with a high boiling point, low vapor pressure, and high dielectric constant, and using DCB as the solvent for ETL, the uniformity, coverage, and surface roughness of the ETL showed better properties. The power conversion efficiency of the PSC in which DCB was used as the solvent achieved a value of 11.07%, which was higher than that of the PSCs in which other solvents were used.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022011
Author(s):  
Rui Huang ◽  
Jiyu Tang

Abstract Perovskite solar cells have attracted the attention of the researchers in the last couple of years as a potential photovoltaic device. However, the use of expensive hole transport materials (HTM) in these devices often restricts their commercial adaptability. Thus exploring cost-effective, efficient HTL and ETL materials remain an important challenge to the researchers. In this work, simulation studies are carried out considering cupric oxide (CuO), a relatively inexpensive material as hole transport materials for planar heterojunction perovskite solar cells. The photo-voltaic performance of CuO based hole transport layer (HTL) has been estimated in combination with several electron transport materials (ETM) that include TiO2,SnO2,ZnO, CdS, ZnSe,PCBM and Cd1-xZnxS. Studies predict that among these materials, the Cd1-xZnxS electron transport layer (ETL) could be the most promising to result high photo-voltaic efficiency in combination to CuO based HTL. Also, the thickness and optical band gap of perovskite absorber are optimized in order to achieve maximum photo-voltaic efficiency. The cell efficiency of FTO / Cd1-xZnxS/CH3NH3PbI3/CuO/carbon structure is predicted 25.24% under optimized operational conditions with Voc, Jsc and Fill Factor of 1.1eV,26.32mA/cm2 and 87.14% respectively.


2020 ◽  
Vol 1 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Meiying Zhang ◽  
Fengmin Wu ◽  
Dan Chi ◽  
Keli Shi ◽  
Shihua Huang

Hybrid organic–inorganic perovskites have attracted intensive attention as the absorber layer in high-performance perovskite solar cells (PSCs).


Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16249-16255 ◽  
Author(s):  
Kisu Lee ◽  
Jaehoon Ryu ◽  
Haejun Yu ◽  
Juyoung Yun ◽  
Jungsup Lee ◽  
...  

In this work, a phenyl-C61-butyric acid methyl ester (PCBM) electron transport layer was modified with Triton X-100, and this improved the photovoltaic performance and air-stability of perovskite solar cells.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7200
Author(s):  
M. Mottakin ◽  
K. Sobayel ◽  
Dilip Sarkar ◽  
Hend Alkhammash ◽  
Sami Alharthi ◽  
...  

An ideal n-i-p perovskite solar cell employing a Pb free CH3NH3SnI3 absorber layer was suggested and modelled. A comparative study for different electron transport materials has been performed for three devices keeping CuO hole transport material (HTL) constant. SCAPS-1D numerical simulator is used to quantify the effects of amphoteric defect based on CH3NH3SnI3 absorber layer and the interface characteristics of both the electron transport layer (ETL) and hole transport layer (HTL). The study demonstrates that amphoteric defects in the absorber layer impact device performance significantly more than interface defects (IDL). The cell performed best at room temperature. Due to a reduction in Voc, PCE decreases with temperature. Defect tolerance limit for IL1 is 1013 cm−3, 1016 cm−3 and 1012 cm−3 for structures 1, 2 and 3 respectively. The defect tolerance limit for IL2 is 1014 cm−3. With the proposed device structure FTO/PCBM/CH3NH3SnI3/CuO shows the maximum efficiency of 25.45% (Voc = 0.97 V, Jsc = 35.19 mA/cm2, FF = 74.38%), for the structure FTO/TiO2/CH3NH3SnI3/CuO the best PCE is obtained 26.92% (Voc = 0.99 V, Jsc = 36.81 mA/cm2, FF = 73.80%) and device structure of FTO/WO3/CH3NH3SnI3/CuO gives the maximum efficiency 24.57% (Voc = 0.90 V, Jsc = 36.73 mA/cm2, FF = 74.93%) under optimum conditions. Compared to others, the FTO/TiO2/CH3NH3SnI3/CuO system provides better performance and better defect tolerance capacity.


Sign in / Sign up

Export Citation Format

Share Document