scholarly journals Boiling of FC-72 on Surfaces with Open Copper Microchannel

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7283
Author(s):  
Robert Kaniowski ◽  
Robert Pastuszko

The paper presents the results of experimental research on pool boiling heat transfer of dielectric liquid FC-72. Measurements were made at atmospheric pressure on open surfaces with microchannels. Heat transfer surfaces, in the form of parallel milled microchannels, were made of copper. The rectangular cross-sectional microchannels were 0.2 to 0.5 mm deep and 0.2 to 0.4 mm wide. The surfaces, compared to a smooth flat surface, provided a five-fold increase in the heat transfer coefficient and a two-fold increase in the critical heat flux. The article analyses the influence of the width and height of the microchannel on the heat transfer process. The maximum heat flux was 271.7 kW/m2, and the highest heat transfer coefficient obtained was 25 kW/m2K. Furthermore, the experimental results were compared with selected correlations for the nucleate pool boiling.

2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Steve Q. Cai ◽  
Avijit Bhunia

In a heat pipe, operating fluid saturates wick structures system and establishes a capillary-driven circulation loop for heat transfer. Thus, the thermophysical properties of the operating fluid inevitably impact the transitions of phase-change mode and the capability of heat transfer, which determine both the design and development of the associated heat pipe systems. This article investigates the effect of liquid properties on phase-change heat transfer. Two different copper wick structures, cubic and cylindrical in cross section, 340 μm in height and 150 μm in diameter or width, are fabricated using an electroplating technique. The phase-change phenomena inside these wick structures are observed at various heat fluxes. The corresponding heat transfer characteristics are measured for three different working liquids: water, ethanol, and Novec 7200. Three distinct modes of the phase-change process are identified: (1) evaporation on liquid–vapor interface, (2) nucleate boiling with interfacial evaporation, and (3) boiling enhanced interface evaporation. Transitions between the three modes depend on heat flux and liquid properties. In addition to the mode transition, liquid properties also dictate the maximum heat flux and the heat transfer coefficient. A quantitative characterization shows that the maximum heat flux scales with Merit number, a dimensionless number connecting liquid density, surface tension, latent heat of vaporization, and viscosity. The heat transfer coefficient, on the other hand, is dictated by the thermal conductivity of the liquid. A complex interaction between the mode transition and liquid properties is reflected in Novec 7200. In spite of having the lowest thermal conductivity among the three liquids, an early transition to the mode of the boiling enhanced interface evaporation leads to a higher heat transfer coefficient at low heat flux.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3062
Author(s):  
Robert Kaniowski ◽  
Robert Pastuszko

Boiling, as the most efficient type of convective heat transfer, is an area of interest in many fields of industry and science. Many works have focused on improving the heat transfer efficiency of boiling by altering the physical and chemical properties of surfaces by using different technological processes in their fabrication. This paper presents experimental investigations into pool boiling on enhanced surfaces with open microchannels. The material of the fabricated surface was copper. Parallel microchannels made by machining were about 0.2, 0.3, and 0.4 mm wide, 0.2 to 0.5 mm deep, and spaced with a pitch equal to twice the width of the microchannel. The experiments were carried out in water at atmospheric pressure. The experimental results obtained showed an increase in the heat flux and the heat transfer coefficient for surfaces with microchannels. The maximum (critical) heat flux was 2188 kW/m2, and the heat transfer coefficient was 392 kW/m2K. An improvement in the maximum heat flux of more than 245% and 2.5–4.9 times higher heat transfer coefficient was obtained for the heat flux range of 992–2188 kW/m2 compared to the smooth surface. Bubble formation and growth cycle in the microchannel were presented. Two static computational models were proposed to determine the bubble departure diameter.


1977 ◽  
Vol 99 (4) ◽  
pp. 554-560 ◽  
Author(s):  
A. Sakurai ◽  
M. Shiotsu

Transient boiling heat transfer for exponential heat input to a platinum wire supported horizontally in a pool of water was investigated. Transient boiling heat transfer coefficient, transient DNB heat flux, and transient maximum heat flux were obtained for exponential periods ranging from 5 ms to 10 s and for system pressures ranging from 0.1 to 2.1 MPa. Transient boiling heat transfer coefficient after the commencement of boiling becomes lower than the steady boiling heat transfer coefficient at the same heat flux. This was explained to be as a result of the time lag of the activation of originally flooded cavities for the increasing rate of the heat input. Initial heat flux was varied from zero to near the steady maximum heat flux. Effect of initial boiling condition on transient DNB and maximum heat fluxes was negligible. Mechanism of transient boiling heat transfer beyond steady DNB heat flux was suggested.


1990 ◽  
Vol 112 (3) ◽  
pp. 736-743 ◽  
Author(s):  
V. X. Tung ◽  
V. K. Dhir

Boiling heat transfer from a sphere embedded in a porous medium composed of nonheated glass particles was studied under steady-state and transient quenching conditions. In the experiments, the diameter of the nonheated glass particles forming the porous layers was varied parametrically. Freon-113 was used as the test liquid. Experimental results showed that the maximum heat flux increased monotonically with increasing glass particle diameter and approached an asymptotic value corresponding to the maximum heat flux obtained in a pool free of glass particles. It was also observed that the minimum heat flux was nearly insensitive to the particle size and the film boiling heat transfer coefficient increased slightly with decreasing particle size. In the nucleate boiling region, the heat transfer coefficient showed a much weaker dependence on wall superheat in the presence of particles. Transient data indicated that the surface temperature was not uniform during quenching. Therefore, different maximum heat fluxes were obtained depending on the location of the thermocouple whose temperature history was employed in recovering the transient boiling curve. However, for some applications, cooling rates predicted by imposing the steady-state boiling curve may not be in large error.


2008 ◽  
Author(s):  
Mukta S. Limaye ◽  
James F. Klausner

A flat and flexible evaporator, which conforms to contoured surfaces, has been developed for loop heat pipe applications. A loop heat pipe (LHP) is a passive, two phase heat transfer device that uses a porous membrane in the evaporator to circulate fluid. A number of flexible membranes have been tested as evaporator wicks that have a length of 12.7 cm and heated area of 50.6 cm2. For cellulose, polyethylene, and blotting paper membranes, maximum heat fluxes of 0.43, 1.5 and 2.9 W/cm2 have been observed, respectively. The maximum heat transfer coefficients measured for these membranes are 551, 876, and 2100 W/m2-K, respectively. The best performance was observed by a membrane made of a fibrous cotton matrix, typically used as gauze. This material has a large pore size and high wettability with water. When tested in a rigid, brass evaporator, the maximum heat flux observed is 5.95 W/cm2, and the maximum heat transfer coefficient is 2865 W/m2-K. A flexible evaporator is fabricated using a heat sealable, flexible barrier pouch, and the cotton matrix membrane is sealed inside. The maximum measured heat flux for the flexible evaporator is 3.2 W/cm2 and maximum measured heat transfer coefficient is 1165 W/m2-K. The observed reduction in heat transfer as compared to the rigid evaporator is due to the poor contact between the evaporator and membrane. It is concluded that for the flexible evaporator membranes considered, the heat transfer mechanism is boiling and the maximum heat flux is limited by the wicking rate of the membrane. For a given membrane, the wicking rate increases with a reduction in the wicking length and decreases with an increasing rate of evaporation. To further improve the performance of the flexible evaporator, it is necessary to ensure efficient vapor removal from the evaporator as well as maintaining good contact between the membrane and the evaporator surface.


2017 ◽  
Vol 29 (1) ◽  
pp. 44-48
Author(s):  
KM Tanvir Ahmmed ◽  
Sultana Razia Syeda

In this study saturated nucleate pool boiling of water with sodium oleate surfactant on a horizontal cylindrical heater surface has been investigated experimentally and compared with that of demineralized water. The concentration of sodium oleate in water was 100-300 ppm. The experimental results show that a small amount of surfactant enhances the heat transfer coefficient significantly. At low surfactant concentrations, heat transfer coefficient increases with increasing surfactant concentration in water. The maximum heat transfer enhancement is found to be at 250 ppm of sodium oleate solution. By adding more surfactant to water, heat transfer coefficient is found to be lowered. Surface tension of different concentration of sodium oleate solutions is measured. It is observed that the maximum heat transfer coefficient is obtained at a surfactant concentration that corresponds to the critical micelle concentration (cmc) of the sodium oleate solution.Journal of Chemical Engineering, Vol. 29, No. 1, 2017: 44-48


Kerntechnik ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhibo Zhang ◽  
Huai-En Hsieh ◽  
Yuan Gao ◽  
Shiqi Wang ◽  
Jia Gao ◽  
...  

Abstract In this study, the pool boiling performance of oxide nanofluid was investigated, the heating surface is a 5 × 30 mm stainless steel heating surface. Three kinds of nanofluids were selected to explore their critical heat flux (CHF) and heat transfer coefficient (HTC), which were TiO2, SiO2, Al2O3. We observed that these nanofluids enhanced CHF compared to R·O water, and Al2O3 case has the most significant enhancement (up to 66.7%), furthermore, the HTC was also enhanced. The number of bubbles in nanofluid case was relatively less than that in R·O water case, but the bubbles were much larger. The heating surface was characterized and it was found that there were nano-particles deposited, and surface roughness decreased. The wettability also decreased with the increase in CHF.


Author(s):  
T. S. Mogaji ◽  
O. A. Sogbesan ◽  
Tien-Chien Jen

Abstract This study presents numerical investigation results of heat flux effect on pool boiling heat transfer enhancement during nucleate boiling heat transfer of water. The simulation was performed for five different heated surfaces such as: brass, copper, mild steel, stainless steel and aluminum using ANSYS simulation software at 1 atmospheric pressure. The samples were heated in a domain developed for bubble growth during nucleate boiling process under the same operational condition of applied heat flux ranged from 100 to 1000 kW/m2 and their corresponding heat transfer coefficient was obtained numerically. Obtained experimental data of other authors from the open literature result is in close agreement with the simulated data, thus confirming the validity of the CFD simulation method used in this study. It is found that heat transfer coefficient increases with increasing heat flux. The results revealed that in comparison to other materials tested, better heat transfer performance up to 38.5% and 7.11% is observed for aluminum and brass at lower superheated temperature difference conditions of 6.96K and 14.01K respectively. This behavior indicates better bubble development and detachment capability of these heating surface materials and could be used in improving the performance of thermal devices toward producing compact and miniaturized equipment.


Sign in / Sign up

Export Citation Format

Share Document