scholarly journals A Combined RMS Simulation Model for DFIG-Based and FSC-Based Wind Turbines and Its Initialization

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8048
Author(s):  
Farshid Goudarzi ◽  
Lutz Hofmann

Reconstructable dynamic simulation models of modern variable-speed wind turbines (WTs), which are integrable into any simulation software, are crucial to the scientists investigating the contribution of WTs to counteracting the current power system stability issues. The structural similarity between a doubly fed induction-generator-based (DFIG-based) WT model and a full-scale-convertor-based (FSC-based) WT model using induction generator offers the possibility of integrating them into a combined modular model with little effort and the same used parameter set. This article presents a combined root mean square (RMS) WT model, which contains a DFIG-based WT and a FSC-based WT using induction generator. The model is designed based on fundamental machine and converter equations and can be applied for classical network stability analyses. Furthermore, analogous well-performing initialization procedures for both DFIG-based and FSC-based WT models are also introduced. As an example, to demonstrate the performance of the WT model in frequency stability studies, the model is extended with a droop-based fast frequency response (FFR) controller and is implemented in a MATLAB-based RMS simulation tool. The results of the case studies confirmed a solid functionality of initialization procedures. Furthermore, they illustrate feasible and comparable general behavior of both WT models as well as their plausible responses in the event of a frequency drop in a 220 kV test system.

Author(s):  
M. Jazaeri ◽  
A.A. Samadi ◽  
H.R. Najafi ◽  
N. Noroozi-Varcheshme

Recently, the growing integration of wind energy into power networks has had a significant impact on power systemstability. Amongst types of large capacity wind turbines (WTs), doubly-fed induction generator (DFIG) wind turbinesrepresent an important percentage. This paper attemps to study the impact of DFIG wind turbines on the powersystem stability and dynamics by modeling all components of a case study system (CSS). Modal analysis is usedfor the study of the dynamic stability of the CSS. The system dynamics are studied by examining the eigenvaluesof the matrix system of the case study and the impact of all parameters of the CSS are studied in normal,subsynchronous and super-synchronous modes. The results of the eigenvalue analysis are verified by usingdynamic simulation software. The results show that each of the electrical and mechanical parameters of the CSSaffect specific eigenvalues.


Author(s):  
Sumer Chand Prasad

Doubly-fed induction generator wind turbines are largely developed due to their variable speed feature. The response of wind turbines to grid disturbance is an important issue, especially since the rated power of the wind turbine is increased; therefore, it is important to study the effect of grid disturbances on the wind turbine. In the chapter, the characteristics of the doubly-fed induction generator during wind speed fluctuation are studied. MATLAB/Simulink software has been used to observe the characteristics of wind turbines during wind speed fluctuation. Simulation results of the doubly-fed induction generator wind turbine system show improved system stability during wind speed variation. Power electronics converters used in the DFIG system are the most sensitive parts of the variable speed wind turbines with regards to system disturbances. To protect from excessive current, the DFIG system is equipped with an over-current and DC voltage overload protection system that trips the system under abnormal conditions.


Author(s):  
Ihedrane Yasmine ◽  
El Bekkali Chakib ◽  
Bossoufi Badre

<span lang="EN-US">The following article presents the control of the power generated by the Doubly Fed Induction Generator, integrated into the wind system, whose rotor is linked to the power converters (Rotor Side Convert (RSC) and Grid Side Converter (GSC)) interfaced by the DC-BUS and connected to the grid via a filter (Rf, Lf) in order to obtain an optimal power to the grid and to ensure system stability. The objective of this study is to understand and to make the comparison between Sliding mode Control technique and the Flux Oriented Control in order to control the Doubly Fed Induction Generator powers exchanged with the grid, it also aims at maintaining the DC-BUS voltage constant and a unit power factor at the grid connection point.The results of simulation show the performance of the Sliding mode Control in terms of monitoring, and robustness with regard to the parametric variations, compared to the Flux Oriented Control. The performance of the systems was tested and compared with the use of MATLAB/Simulink software.</span>


2022 ◽  
Vol 20 (2) ◽  
pp. 223-232
Author(s):  
Larbi Djilali ◽  
Anuar Badillo-Olvera ◽  
Yennifer Yuliana Rios ◽  
Harold Lopez-Beltran ◽  
Lakhdar Saihi

Sign in / Sign up

Export Citation Format

Share Document