Double Fed Induction Generator Control for Wind Power Generation

Author(s):  
Sumer Chand Prasad

Doubly-fed induction generator wind turbines are largely developed due to their variable speed feature. The response of wind turbines to grid disturbance is an important issue, especially since the rated power of the wind turbine is increased; therefore, it is important to study the effect of grid disturbances on the wind turbine. In the chapter, the characteristics of the doubly-fed induction generator during wind speed fluctuation are studied. MATLAB/Simulink software has been used to observe the characteristics of wind turbines during wind speed fluctuation. Simulation results of the doubly-fed induction generator wind turbine system show improved system stability during wind speed variation. Power electronics converters used in the DFIG system are the most sensitive parts of the variable speed wind turbines with regards to system disturbances. To protect from excessive current, the DFIG system is equipped with an over-current and DC voltage overload protection system that trips the system under abnormal conditions.

2011 ◽  
Vol 268-270 ◽  
pp. 61-66
Author(s):  
Hung Cheng Chen ◽  
Cheng Chien Kuo

The wind is the main driving force of wind turbine, which directly affects the dynamic responses of generator. Due to its randomness and intermittence, wind energy has great impact on the quality and security of the operation of power system. The aim of this paper is to study the influence of wind speed fluctuation on the dynamic responses of the doubly fed induction generator (DFIG) connected to a power system. The mathematical models of a 3.6 MW DFIG and different wind speed patterns are first derived. The MATLAB/Simulink software is then utilized to model the DFIG, grid-side converter, rotor-side converter, and the wind speed patterns. Simulation results obtained from these models are used to analyze the effects of wind speed fluctuation on the system dynamic responses.


2016 ◽  
Vol 40 (3) ◽  
pp. 1005-1017 ◽  
Author(s):  
Mohammed Aidoud ◽  
Moussa Sedraoui ◽  
Abderrazek Lachouri ◽  
Abdelhalim Boualleg

A robustification method of primary two degree-of-freedom (2-DOF) controllers is proposed in this paper to control the wind turbine system equipped with a doubly-fed induction generator DFIG. The proposed robustification method should follow the following three step-procedures. First, the primary 2-DOF controller is designed through the initial form of the multivariable generalized predictive control MGPC law to ensure a good tracking dynamic of reference trajectories. Second, the robust [Formula: see text] controller is independently designed for the previous system to ensure good robustness properties of the closed-loop system against model uncertainties, neglecting dynamics and sensor noises. Finally, both above mentioned controllers are combined to design the robustified 2-DOF-MGPC controller using Youla parameterization method. Therefore, the obtained controller conserves the same good tracking dynamic that is provided by the primary 2-DOF-MGPC controller. It ensures the same good robustness properties which are produced by the robust [Formula: see text] controller. A wind turbine system equipped with a DFIG is controlled by the robustified 2-DOF-MGPC controller. Its dynamic behaviour is modelled by an unstructured-output multiplicative uncertainty plant. The controller performances are valid by comparison with those given through both controllers, which are primary 2-DOF-MGPC and robust [Formula: see text] controllers in time and frequency domains.


Author(s):  
Ghulam sarwar Kaloi ◽  
Jie Wang ◽  
Mazhar H Baloch

<p><em> </em><em>     </em>The present paper formulates the state space modeling of doubly fed induction generator (DFIG) based wind turbine system for the purpose of the stability analysis. The objective of this study is to discuss the various modes of operation of the DFIG system under different operating conditions such as voltage sags with reference to variable wind speed and grid connection. The proposed control methodology exploits the potential of the DFIG scheme to avoid that grid voltage unbalances compromise the machine operation, and to compensate voltage unbalances at the point of common coupling (PCC), preventing adverse effects on loads connected next to the PCC. This methodology uses the rotor side converter (RSC) to control the stator current injected through the machine and the GSC to control the stator voltage to minimize the electromagnetic torque oscillations. Extensive simulation results on a 2MW DFIG wind turbine system illustrate the enhanced system performance and verify the effectiveness of the controller.</p>


Sign in / Sign up

Export Citation Format

Share Document