scholarly journals Evolution of Temperature Field around Underground Power Cable for Static and Cyclic Heating

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8191
Author(s):  
Shahbaz Ahmad ◽  
Zarghaam Haider Rizvi ◽  
Joan Chetam Christine Arp ◽  
Frank Wuttke ◽  
Vineet Tirth ◽  
...  

Power transmission covering long-distances has shifted from overhead high voltage cables to underground power cable systems due to numerous failures under severe weather conditions and electromagnetic pollution. The underground power cable systems are limited by the melting point of the insulator around the conductor, which depends on the surrounding soils’ heat transfer capacity or the thermal conductivity. In the past, numerical and theoretical studies have been conducted based on the mechanistic heat and mass transfer model. However, limited experimental evidence has been provided. Therefore, in this study, we performed a series of experiments for static and cyclic thermal loads with a cylindrical heater embedded in the sand. The results suggest thermal charging of the surrounding dry sand and natural convection within the wet sand. A comparison of heat transfer for dry, unsaturated and fully saturated sand is presented with graphs and colour maps which provide valuable information and insight of heat and mass transfer around an underground power cable. Furthermore, the measurements of thermal conductivity against density, moisture and temperature are presented showing positive nonlinear dependence.

1992 ◽  
Vol 35 (5) ◽  
pp. 1569-1573 ◽  
Author(s):  
S. K. Abbouda ◽  
D. S. Chung ◽  
P. A. Seib ◽  
A. Song

Author(s):  
Paweł Ocłoń ◽  
Piotr Cisek ◽  
Marcelina Matysiak

Abstract The circular economy is a closed cycle that allows one to reuse the industrial waste, as well as minimize the energy and resources losses during the production process. This paper presents an innovative idea of the application of a geopolymer cable backfill for underground power cable system installation. The closed cycle, in this case, is formulated as follows: the primary resource is the waste from the combustion of fossil fuels, i.e., fly ash that is utilized to form the geopolymer matrix. The geopolymer then is used as thermal backfill in underground power cable systems. Utilization of combustion by-products in the form of a geopolymer is a highly profitable solution since landfill waste disposal, in this case, generates considerable costs for the electrical energy producers. In typical applications, geopolymers are used as insulators. By adding individual components, the thermal conductivity of 2.0 W/(m K), higher than of typical thermal backfills (Fluidized Thermal Backfill), which value is close to 1.5 W/(m K), is reached. What is very important, geopolymers can absorb water better than typical sand–cement mixtures. As a result, a high thermal conductivity with the temperature increase is maintained. The application of geopolymers as thermal backfills has the potential to improve the flexibility of underground power cable systems, as well as to minimize the material costs of installation. The case study is presented to show the economic benefits of using the combustion by-products as a geopolymer thermal backfill. The finite element method model of an underground power cable system is developed, and optimization of backfill dimensions is provided to minimize the material costs using the geopolymer thermal backfill and to maximize the underground power cable system performance. The main result of this paper is that the application of geopolymers leads to a decrease in underground power cable system costs, compared to traditional backfill (sand–cement mixture). The reason is the higher value of thermal conductivity, which allows selecting a cable with a smaller cross-sectional area. Also, the environmental benefits of geopolymer application for cable bedding are discussed. Graphic abstract


2012 ◽  
Vol 134 (10) ◽  
Author(s):  
L. Jiang ◽  
L. W. Wang ◽  
Z. Q. Jin ◽  
B. Tian ◽  
R. Z. Wang

Properties, such as thermal conductivity and permeability, are important for the heat and mass transfer performance in sorption refrigeration. This Technical Brief investigates the thermal conductivity and permeability of eight types of chlorides, which are consolidated with expanded natural graphite (ENG) for the heat transfer intensification.


Author(s):  
M. Boutaous ◽  
E. Pe´rot ◽  
A. Maazouz ◽  
P. Bourgin ◽  
P. Chantrenne

The process of rotational moulding consists in manufacturing plastic parts by heating a polymer powder in a biaxial rotating mould. In order to optimise the production cycle of this process, a complete simulation model has to be used. This model should describe the phenomena of heat and mass transfer in a moving granular media with phase change, coalescence, sintering, air evacuation and crystallization during the cooling stage. This paper focus on the study of heat and mass transfer in a quiescent polymer powder during the heating stage. An experimental device has been built. It consists in an open plane static mold on which an initial thickness, e, of a polymer powder is deposited. This powder is then heated until it melts. An inverse heat conduction method is used to determine the heat flux and temperature at the interface between the mold and the powder. This interfacial heat flux is taken as a boundary condition in a numerical heat transfer model witch takes into account the heat transfer in granular media with phase change, coalescence, sintering, air bubbles evacuation and rheological behaviour of the polymer. For the numerical simulation of the heat transfer, the apparent specific heat method is used. This approach allows to solve the same energy equation for all the material phases, so one do not have to calculate the melting front evolution. This fine modelling, close to the real physical phenomena makes it possible to estimate the temperature profile and the evolution of the polymer powder characteristics (phase change, air diffusion, viscosity, evolution of the thermophysical properties of the equivalent homogeneous medium, thickness reduction, air volume fraction...). Several results are then presented, and the influence of different parameters, like the thermal contact resistance, the process initial conditions and the polymer’s rheological characteristics are studied and commented. Indeed the predictions of the temperature rises in the polymer bed, agree well with the experimental measurements.


2018 ◽  
pp. 29-35
Author(s):  
А. Avramenko ◽  
M. Kovetskaya ◽  
A. Tyrinov ◽  
Yu. Kovetska

Nanofluid using for intensification of heat transfer during boiling are analyzed. The using boiling nanofluids for cooling high-temperature surfaces allows significantly intensify heat transfer process by increasing the heat transfer coefficient of a nanofluid in comparison with a pure liquid. The properties of nanoparticles, their concentration in the liquid, the underheating of the liquid to the saturation temperature have significant effect on the rate of heat transfer during boiling of the nanofluid. Increasing critical heat flux during boiling of nanofluids is associated with the formation of deposition layer of nanoparticles on heated surface, which contributes changing in the microcharacteristics of heat exchange surface. An increase in the critical heat flux during boiling of nanofluids is associated with the formation of a layer of deposition of nanoparticles on the surface, which contributes to a change in the microcharacteristics of the heat transfer of the surface. Mathematical model and results of calculation of film boiling characteristics of nanofluid on vertical heated wall are presented. It is shown that the greatest influence on the processes of heat and mass transfer during film boiling of the nanofluid is exerted by wall overheating, the ratio of temperature and Brownian diffusion and the concentration of nanoparticles in the liquid. The mathematical model does not take into account the effect changing structure of the heated surface on heat transfer processes but it allows to evaluate the effect of various thermophysical parameters on intensity of deposition of nanoparticles on heated wall. The obtained results allow to evaluate the effect of nanofluid physical properties on heat and mass transfer at cooling of high-temperature surfaces. The using nanofluids as cooling liquids for heat transfer equipment in the regime of supercritical heat transfer promotes an increase in heat transfer and accelerates the cooling process of high-temperature surfaces. Because of low thermal conductivity of vapor in comparison with the thermal conductivity of the liquid, an increase in the concentration of nanoparticles in the vapor contributes to greater growth in heat transfer in the case of supercritical heat transfer.


Sign in / Sign up

Export Citation Format

Share Document