scholarly journals Power Management Analysis of a Photovoltaic and Battery Energy Storage-Based Smart Electrical Car Park Providing Ancillary Grid Services

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8433
Author(s):  
Yingcheng Wang ◽  
Daniel Gladwin

Future car parks will require significant power to support electric vehicle (EV) charging as there will be both an increase in the penetration of EVs and a higher demand for charging power as battery packs increase in capacity. The effective management of the charging and local battery storage can be installed to help prevent excessive increases in electrical feeder capacity; however, it is inevitable that car parks will attain significant power capability in the future. There is therefore an opportunity for car park owners to utilise this and generate additional revenue by providing frequency response services to the electrical grid. This paper describes the modelling of a car park that utilises photovoltaic power generation, battery storage, and EV charging management strategies to provide a grid frequency response service. The analysis using simulated car park data shows that it can provide a high availability in terms of service but it is dependent on the capacity of the installed generation and storage.

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2048 ◽  
Author(s):  
Rodrigo Martins ◽  
Holger Hesse ◽  
Johanna Jungbauer ◽  
Thomas Vorbuchner ◽  
Petr Musilek

Recent attention to industrial peak shaving applications sparked an increased interest in battery energy storage. Batteries provide a fast and high power capability, making them an ideal solution for this task. This work proposes a general framework for sizing of battery energy storage system (BESS) in peak shaving applications. A cost-optimal sizing of the battery and power electronics is derived using linear programming based on local demand and billing scheme. A case study conducted with real-world industrial profiles shows the applicability of the approach as well as the return on investment dependence on the load profile. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, peak-power tariff, and battery aging. This underlines the need for a general mathematical optimization approach to efficiently tackle the challenge of peak shaving using an energy storage system. The case study also compares the applicability of yearly and monthly billing schemes, where the highest load of the year/month is the base for the price per kW. The results demonstrate that batteries in peak shaving applications can shorten the payback period when used for large industrial loads. They also show the impacts of peak shaving variation on the return of investment and battery aging of the system.


2018 ◽  
Vol 33 (4) ◽  
pp. 4382-4396 ◽  
Author(s):  
Md Shariful Islam ◽  
Nadarajah Mithulananthan ◽  
Kwang Y. Lee
Keyword(s):  

2017 ◽  
Author(s):  
Dayton Balderston ◽  
John Eric Kelley ◽  
James Crowder ◽  
Thomas DeAgostino ◽  
Christopher Depcik

Climate change concerns are driving incentives to increase the fuel economy of passenger vehicles. Consequently, this has resulted in a growing prevalence of electrified vehicles (EVs) consisting of hybrid, plug-in hybrid, and fully electric vehicles. Unfortunately, EVs are often removed from the road when 70 to 80% of the original energy capacity remains in their battery pack. In order to maintain or increase the value of EV battery packs in an end-of-vehicle life scenario, there are three potential solutions: remanufacturing for re-use, recycling, or repurposing. However, the complexity of handling dissimilar battery chemistries makes both remanufacturing and recycling a significant challenge. Hence, repurposing may prove to be a more viable short-term goal of the industry. In order to explore this potential outcome, a team of undergraduate students studied the continuous cycling effects of used and refurbished Toyota® Prius nickel metal hydride battery packs. A Raspberry Pi 2 Model B microcomputer recorded relevant data, including battery pack voltage, energy input, and energy output. In combination, a Laboratory Virtual Instrument Engineering Workbench (LabVIEW™) control system used this logged information to regulate charging and discharging of the battery pack. In addition, to enhance the environmental sustainability of the project, this control system acquired solar information from a nearby weather station, subsequently ensuring that the battery pack only recharged during times of peak solar radiation. Analysis of the pack’s energy balance helped to characterize the cycle life of the pack and its potential in repurposing. Others can emulate the methodology employed as a way to instruct students about the potential left in used vehicular battery packs and their possible integration with the electrical grid.


Sign in / Sign up

Export Citation Format

Share Document