scholarly journals Design and Parametric Investigation of an Efficient Heating System, an Effort to Obtain a Higher Seasonal Performance Factor

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8475
Author(s):  
Trond Thorgeir Harsem ◽  
Behrouz Nourozi ◽  
Amirmohammad Behzadi ◽  
Sasan Sadrizadeh

The present work introduces an innovative yet feasible heating system consisting of a ground source heat pump, borehole thermal energy storage, an auxiliary heater, radiators, and ventilation coils. The concept is developed by designing a new piping configuration monitored by a smart control system to reduce the return flow temperature and increase the temperature differential between the supply and return flows. The radiators and ventilation heating circuits are connected in series to provide the heat loads with the same demand. The investigation of the proposed model is performed through developed Python code considering a case study hospital located in Norway. The article presents, after validation of the primary heating system installed in the hospital, a parametric investigation to evaluate the effect of main operational parameters on the performance metrics of both the heat pump and the total system. According to the results, the evaporator temperature is a significant parameter that considerably impacts the system performance. The parametric study findings show that the heat pumps with a thermal capacity of 400 kW and 600 kW lead to the highest heat pump and total seasonal performance factors, respectively. It is also observed that increasing the heat pump capacity does not affect the performance indicators when the condensation temperature is 40 °C and the heat recovery is 50%. Moreover, choosing a heat pump with a smaller capacity at the heat recovery of 75% (or higher) would be an appropriate option because the seasonal performance values are not varied by changing the heat pump capacity. The results reveal that reducing return temperature under a proper parameters selection results in substantially higher seasonal performance factors of the heat pump and total system. These outcomes are in-line with the United Nations sustainable development goals including Sustainable Cities and Communities.

1983 ◽  
Vol 105 (4) ◽  
pp. 446-453 ◽  
Author(s):  
D. J. Roeder ◽  
R. L. Reid

The series solar-assisted heat pump heating system with ground-coupled storage in The University of Tennessee’s TECH House I in Knoxville, Tennessee, has been modeled using TRNSYS/GROCS and was compared to the experimental performance for the 1980–81 heating season. The simulation results were within 8 percent of the experimental measurements. Both simulation and experimental results showed that ground coupling of thermal storage led to the elimination of electric resistance backup heat and a large reduction in the peak heating demand of the house. Results of a parametric study showed that, in general, a ground-coupled storage tank performs better than a storage tank placed outdoors in the Knoxville area. Application of a next generation heat pump resulted in the most significant impact on the seasonal performance factor. As expected, higher performance collectors and larger collector areas led to higher system seasonal performance. An economic analysis showed that the series solar heat pump system cannot economically compete with the stand-alone heat pump system in the Knoxville area.


2012 ◽  
Vol 614-615 ◽  
pp. 670-673
Author(s):  
Tao Huang ◽  
Dong Li Yuan

In this paper, a heat pump water heating system with waste heat recovery in ammonia refrigeration system was put forward, based on the practical project analysis of energy demand and waste heat emission. Based on the operating characteristics of ammonia refrigeration system, the ammonia heat exchanger was designed to be installed in series on the ammonia main pipe, which can ensure the system operate efficiently and reliably. Through the analysis of measured data, significant economic benefits had been brought about by using the heat pump water heating system. This project can save 2.19 million RMB in annual operating cost, and the investment recovery period will be only 1.5 years. The heat pump water heating system has excellent development prospect.


Author(s):  
Suola Shao ◽  
Huan Zhang ◽  
Shijun You ◽  
Yaran Wang

Abstract In response to the triple crisis of energy–environment–economy (3Es), the air-source heat pump (ASHP) system is considered to be one of the most feasible candidates to upgrade the traditional high emission heating solutions. In this paper, a novel thermal storage refrigerant-heated panel (RHP) is proposed for the ASHP heating system. Experiments were conducted in a climate chamber to test the heating and defrosting performance of the system, the thermal performance of the RHP, the system energy efficiency, and the system economic feasibility. The results show that the heat flux of the RHP is as high as 625.5 W/m2 at a condensation temperature of 40 °C and an outdoor air temperature of −7 °C. Meanwhile, the system is demonstrated to be reliable and competitive with efficient thermal stability in heating conditions and comfortable indoor thermal in defrosting conditions. The coefficient of performance (COP) ranges from 2.2 to 4.0 when the outdoor air temperature changes from −12 °C to 7 °C in the tests. Meanwhile, the initial capital cost and the total annual cost of the proposed system are 430 USD and 203.1 USD, respectively, which is competitive in the distracted heating systems.


2014 ◽  
Vol 35 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Robert Sekret ◽  
Anna Nitkiewicz

Abstract Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


Sign in / Sign up

Export Citation Format

Share Document