scholarly journals A Review of Modelling of the FCC Unit. Part I: The Riser

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 308
Author(s):  
Thabang W. Selalame ◽  
Raj Patel ◽  
Iqbal M. Mujtaba ◽  
Yakubu M. John

Heavy petroleum industries, including the fluid catalytic cracking (FCC) unit, are useful for producing fuels but they are among some of the biggest contributors to global greenhouse gas (GHG) emissions. The recent global push for mitigation efforts against climate change has resulted in increased legislation that affects the operations and future of these industries. In terms of the FCC unit, on the riser side, more legislation is pushing towards them switching from petroleum-driven energy sources to more renewable sources such as solar and wind, which threatens the profitability of the unit. On the regenerator side, there is more legislation aimed at reducing emissions of GHGs from such units. As a result, it is more important than ever to develop models that are accurate and reliable, that will help optimise the unit for maximisation of profits under new regulations and changing trends, and that predict emissions of various GHGs to keep up with new reporting guidelines. This article, split over two parts, reviews traditional modelling methodologies used in modelling and simulation of the FCC unit. In Part I, hydrodynamics and kinetics of the riser are discussed in terms of experimental data and modelling approaches. A brief review of the FCC feed is undertaken in terms of characterisations and cracking reaction chemistry, and how these factors have affected modelling approaches. A brief overview of how vaporisation and catalyst deactivation are addressed in the FCC modelling literature is also undertaken. Modelling of constitutive parts that are important to the FCC riser unit such as gas-solid cyclones, disengaging and stripping vessels, is also considered. This review then identifies areas where current models for the riser can be improved for the future. In Part II, a similar review is presented for the FCC regenerator system.

Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 388
Author(s):  
Thabang W. Selalame ◽  
Raj Patel ◽  
Iqbal M. Mujtaba ◽  
Yakubu M. John

Heavy petroleum industries, including the Fluid Catalytic Cracking (FCC) unit, are among some of the biggest contributors to global greenhouse gas (GHG) emissions. The FCC unit’s regenerator is where these emissions originate mostly, meaning the operation of FCC regenerators has come under scrutiny in recent years due to the global mitigation efforts against climate change, affecting both current operations and the future of the FCC unit. As a result, it is more important than ever to develop models that are accurate and reliable at predicting emissions of various greenhouse gases to keep up with new reporting guidelines that will help optimise the unit for increased coke conversion and lower operating costs. Part 1 of this paper was dedicated to reviewing the riser section of the FCC unit. Part 2 reviews traditional modelling methodologies used in modelling and simulating the FCC regenerator. Hydrodynamics and kinetics of the regenerator are discussed in terms of experimental data and modelling. Modelling of constitutive parts that are important to the FCC unit, such as gas–solid cyclones and catalyst transport lines, are also considered. This review then identifies areas where the current generation of models of the regenerator can be improved for the future. Parts 1 and 2 are such that a comprehensive review of the literature on modelling the FCC unit is presented, showing the guidance and framework followed in building models for the unit.


2012 ◽  
Vol 18 (2) ◽  
pp. 591-593 ◽  
Author(s):  
Xionghou Gao ◽  
Zhicheng Tang ◽  
Gongxuan Lu ◽  
Haitao Zhang ◽  
Baojie Wang

2020 ◽  
Vol 200 ◽  
pp. 108317
Author(s):  
Wanrong Liu ◽  
Xinmei Liu ◽  
Yu Gu ◽  
Yuxiang Liu ◽  
Zhumo Yu ◽  
...  

2020 ◽  
Vol 34 (5) ◽  
pp. 5307-5316
Author(s):  
Haidong Li ◽  
Yahe Zhang ◽  
Chunming Xu ◽  
Suoqi Zhao ◽  
Keng H. Chung ◽  
...  

2016 ◽  
Vol 30 (12) ◽  
pp. 10371-10382 ◽  
Author(s):  
U. J. Etim ◽  
Pingping Wu ◽  
Peng Bai ◽  
Wei Xing ◽  
Rooh Ullah ◽  
...  

2020 ◽  
Vol 17 (2) ◽  
pp. 1079-1084
Author(s):  
Zarkoni Azis ◽  
Bambang Heru Susanto ◽  
Mohammad Nasikin

Gasoline is liquid hydrocarbon fuel used for spark-ignition engine. Most of gasoline production is carried out in the petroleum oil refinery through several stages of process and fluid catalytic cracking (FCC) is an important process that can convert some of heavy oil fractions like vacuum gasoil (VGO) and residue to be cracked into gasoline and lighter products. Consumption of gasoline for transportation fuel in Indonesia is higher than its production capability, so this gap has compelled to search the alternative process route using renewable feedstock. Coprocessing of petroleum gasoil with crude palm oil in fluid catalytic cracking had been investigated previously resulting in lower value of conversion as well as gasoline yield when applying co-feeds at higher level of vegetable oils. Cracking feedstock containing triglyceride and fatty acid from vegetable oil is supposed to be the other possibility as a reason of conversion and yield changes. The research work is aimed to find out another way for gasoline yield upgrading in fluid catalytic cracking process using available catalyst by coprocessing of VGO with refined bleached deodorized palm oil (RBDPO) and small amount of palm fatty acid distillate (PFAD). The experimental work of cracking reaction was performed on fluid-bed reactor of ACE unit at temperature of 530 °C, nearly atmospheric pressure and catalyst-oil ratio of 5.5 g/g. Three kind of oil feeds were tested namely VGO, VGO mixed with 5% RBDPO and VGO added with 5% RBDPO-PFAD of mixing ratio 9:1. The cracking reaction results in gaseous and liquid products. The gaseous phase product was analyzed using online gas chromatography to detect light hydrocarbon components of C1, C2 and H2 as dry gas and hydrocarbon components of C3 and C4 as LPG. The liquid item was investigated through gas chromatography of simulated distillation to separate fluid components including gasoline, light cycle oil (LCO) and slurry oil. Carbon material placed on catalyst through cracking reaction was analyzed at regeneration step of spent catalyst passed through catalytic converter by online Infrared method. Coprocessing of VGO with 5% RBDPO and VGO with 5% RBDPO-PFAD can alter conversion and product yields. The presence of triglyceride and fatty acid in oil feeds during cracking reaction influence signifi- cantly to gasoline enhancement. Although this coprocessing work has shown initial phenomenon in accordance with hypothesis, further investigation is necessary to explore deeper in order to obtain an optimized process condition by various levels of coprocessing feed.


Sign in / Sign up

Export Citation Format

Share Document