scholarly journals Phase-Independent Reactive Power Compensation Based on Four-Wire Power Converter in the Presence of Angular Asymmetry between Voltage Vectors

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 497
Author(s):  
Dariusz Zieliński ◽  
Bartłomiej Stefańczak ◽  
Konrad Jędrys

The paper presents the reactive power compensation method that allows for reducing the active power flow even in the presence of angular asymmetry between voltage vectors of the utility grid. Reactive power compensation ensures the reduction of power transmission losses and therefore brings significant economic benefits to electricity consumers. The concept of the alternating current/direct current (AC/DC) converter for prosumer applications operating as a local reactive power compensator has been proposed. The system is driven by a multi-resonant algorithm, allowing for independent control of the reactive power in each phase. The proposed method was validated experimentally by using a prototype of the converter, programmable AC source, and grid impedance model. The method made it possible to cover the reactive power demand without unnecessary active power generation and thus to improve the efficiency of the analyzed prototype. This solution can be implemented particularly in radial grids and non-urban areas.

Author(s):  
Adeesh Sharma ◽  
Himmat Singh

In this paper, A Distribution Static Synchronous Compensator (D-STATCOM) is used for improving the power factor, power quality and to control power flow control in the distribution line. It used to give reactive and active power compensation in the distribution line. The power depends on the power factor of the loads connected to the transmission line. In this paper we have used a new DSTATCOM using modified SVPWM technique. The previous DSTATCOM are basically controlled by PWM, or SPWM technique which produce high harmonics distortion but using SVPWM technique distortion reduces to maximum possible level. In our system we also have examined the losses due to DSTATCOM when connected in the distribution system. To decrease the reactive power and to minimize the undesirable load to require maintains the flow of reactive power. As a result, the power a factor of the load descant, leading to the limitation of the active power flow in the line. The D-STATCOM is a power electronics based on advanced device can be used to control power flow in the distribution line. The construction of system is able to recover the drop-in bus voltage when any loading effect arises, but due to 5th harmonic performance of DSTATCOM reduces somewhere.


Author(s):  
Tanisha Bharol ◽  
Pranjali Bora ◽  
Sravani Sai M ◽  
Dhruvi Bansal ◽  
Dr. Sandeep Sharma

— In power system, active power flow is the main concern in order to manage the demand supply. The maximum use of the transmission lines under their stability limit is very much required. Flexible alternating current transmission system (FACTS) device are very much useful to control power system parameters. A STATCOM (STATCOM) is a FACTS device which is able to control active and reactive power with voltage magnitude and phase angle. In this paper, STATCOM is used in a 10 bus system to control the flow of active power under contingency condition. Simulation result shows the effectiveness of the STATCOM in providing the optimal power flow in the power system considered here.


A FACTS (Flexible AC Transmission) controlled device, STATCOM is the best solution for power compensation in the area of microgrid system. It regulates the reactive power by injecting the reactive current in to the ac/dc hybrid microgrid terminals. The STATCOM is applicable for shunt compensation which has a great role in dynamic performance by controlling its reactive power. The proposed work demonstrated about the enhancement of voltage sag during fault condition. It can improve the wind turbine performance. The main objective for the STATCOM application in windfarm is to improve the system voltage by supplying or absorbing the reactive power into hybrid ac /dc microgrid system. During steady state operation, the fundamental component of the VSC (Voltage source converter) voltage in phase with system voltage, which shows uncontrol action on active power flow. If there is change between these two voltages (lead or lag), then STATCOM can generates (or absorbs) reactive power. This phase shift leads to flow of active power which is responsible for increase or decreases of capacitor voltage. Assumption has been taken by considering the fixed speed of wind turbine. The performance of windfarm with and without STATCOM is examined and analyzed under fault condition by using MATLAB Simulink 2016.


Author(s):  
SURYA PRAKASH ◽  
KAMTA PRASAD VERMA ◽  
BRIJESH SINGH

This electronic document is a “live” template. The various In present a new Static Synchronous Series Compensator (SSSC) for the control of active power flow on a transmission line is proposed and its effectiveness is investigated. The new SSSC is based on injecting a voltage in a given line to counter or augment the voltage &Power produced by the inductive reactance of the line. The resulting compensator, therefore, emulates the control of transmission line reactance and thus, it assists in control by the power transmission capacity. The voltage to be injected in a line is produced by a Binary Voltage Source Inverter (BVSI). BVSI is an attractive recently proposed Voltage Source Inverter. Its output contains very little harmonics and it utilizes very few dc sources unlike conventional multi-level VSIs. The % phase output of the BVSI is synchronized to the line frequency and its phase is arranged to be in or out of phase with the Line reactance drop. The proposed BVSI-SSSC is realized by using three binary proportioned dc sources, which may be appropriately dimensioned capacitors. The resulting output of a BVSI-SSSC is a 15-step ac voltage waveform. The BVSISSSC has a sophisticated set of coordinated controlled which ensure: BVSI frequency is in synchronism with the system frequency, firing pulses are regulated for inverter valves to ensure minimum harmonic content, the selection of Modulation Index and arrangement regulates an appropriate phase relationship to create the desired change in the power flow, and adjustment of firing angles to ensure that the capacitors creating dc binary proportioned sources maintain desired charge on them. Armillary controls may be added to create positive system damping through active power control, and voltage dependent controllers may be added to limit over and under voltage (charging) of capacitors during fault conditions.


Author(s):  
Yu. F. Yu. F. Romaniuk ◽  
О. V. Solomchak ◽  
М. V. Hlozhyk

The issues of increasing the efficiency of electricity transmission to consumers with different nature of their load are considered. The dependence of the efficiency of the electric network of the oil field, consisting of a power line and a step-down transformer, on the total load power at various ratios between the active and reactive components of the power is analyzed, and the conditions under which the maximum transmission efficiency can be ensured are determined. It is shown by examples that the power transmission efficiency depends not only on the active load, but also largely on its reactive load. In the presence of a constant reactive load and an increase in active load, the total power increases and the power transmission efficiency decreases. In the low-load mode, the schedule for changing the power transmission efficiency approaches a parabolic form, since the influence of the active load on the amount of active power loss decreases, and their value will mainly depend on reactive load, which remains unchanged. The efficiency reaches its maximum value provided that the active and reactive components of the power are equal. In the case of a different ratio between them, the efficiency decreases. With a simultaneous increase in active and reactive loads and a constant value of the power factor, the power transmission efficiency is significantly reduced due to an increase in losses. With a constant active load and an increase in reactive load, efficiency of power transmission decreases, since with an increase in reactive load, losses of active power increase, while the active power remains unchanged. The second condition, under which the line efficiency will be maximum, is full compensation of reactive power.  Therefore, in order to increase the efficiency of power transmission, it is necessary to compensate for the reactive load, which can reduce the loss of electricity and the cost of its payment and improve the quality of electricity. Other methods are also proposed to increase the efficiency of power transmission by regulating the voltage level in the power center, reducing the equivalent resistance of the line wires, optimizing the loading of the transformers of the step-down substations and ensuring the economic modes of their operation.


Sign in / Sign up

Export Citation Format

Share Document