Improving the efficiency of oilfield electric power distribution

Author(s):  
Yu. F. Yu. F. Romaniuk ◽  
О. V. Solomchak ◽  
М. V. Hlozhyk

The issues of increasing the efficiency of electricity transmission to consumers with different nature of their load are considered. The dependence of the efficiency of the electric network of the oil field, consisting of a power line and a step-down transformer, on the total load power at various ratios between the active and reactive components of the power is analyzed, and the conditions under which the maximum transmission efficiency can be ensured are determined. It is shown by examples that the power transmission efficiency depends not only on the active load, but also largely on its reactive load. In the presence of a constant reactive load and an increase in active load, the total power increases and the power transmission efficiency decreases. In the low-load mode, the schedule for changing the power transmission efficiency approaches a parabolic form, since the influence of the active load on the amount of active power loss decreases, and their value will mainly depend on reactive load, which remains unchanged. The efficiency reaches its maximum value provided that the active and reactive components of the power are equal. In the case of a different ratio between them, the efficiency decreases. With a simultaneous increase in active and reactive loads and a constant value of the power factor, the power transmission efficiency is significantly reduced due to an increase in losses. With a constant active load and an increase in reactive load, efficiency of power transmission decreases, since with an increase in reactive load, losses of active power increase, while the active power remains unchanged. The second condition, under which the line efficiency will be maximum, is full compensation of reactive power.  Therefore, in order to increase the efficiency of power transmission, it is necessary to compensate for the reactive load, which can reduce the loss of electricity and the cost of its payment and improve the quality of electricity. Other methods are also proposed to increase the efficiency of power transmission by regulating the voltage level in the power center, reducing the equivalent resistance of the line wires, optimizing the loading of the transformers of the step-down substations and ensuring the economic modes of their operation.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1121
Author(s):  
Rozmysław Mieński ◽  
Przemysław Urbanek ◽  
Irena Wasiak

The paper includes the analysis of the operation of low-voltage prosumer installation consisting of receivers and electricity sources and equipped with a 3-phase energy storage system. The aim of the storage application is the management of active power within the installation to decrease the total power exchanged with the supplying network and thus reduce energy costs borne by the prosumer. A solution for the effective implementation of the storage system is presented. Apart from the active power management performed according to the prosumer’s needs, the storage inverter provides the ancillary service of voltage regulation in the network according to the requirements of the network operator. A control strategy involving algorithms for voltage regulation without prejudice to the prosumer’s interest is described in the paper. Reactive power is used first as a control signal and if the required voltage effect cannot be reached, then the active power in the controlled phase is additionally changed and the Energy Storage System (ESS) loading is redistributed in phases in such a way that the total active power set by the prosumer program remains unchanged. The efficiency of the control strategy was tested by means of a simulation model in the PSCAD/EMTDC program. The results of the simulations are presented.


2013 ◽  
Vol 732-733 ◽  
pp. 1354-1357
Author(s):  
Shi Wang Yang ◽  
Peng Li ◽  
Chang Wang ◽  
Jia Ming Li

How to ensure the security, stability and economic operation of microgrid in different operation modes is a difficult problem of microgrid research. There is active power and reactive power coupling in the regulation of frequencies and voltages because of the line parameter characteristics of microgrid. The defect of the traditional active power-frequency, reactive power-voltage droop control is analyzed and a novel decoupling droop control method for low voltage microgrid is proposed in this paper. At last, the multiple feedback loop control strategy for inverters on the basis of this proposed method and a microgrid simulation model are established. The comparative analysis between the new method and the traditional method based on the simulation results can prove that the proposed control method is simple in design, and it can assure an excellent power quality and realize the reasonable distribution of active power and reactive power between distributed generations.


The Indian economy has been growing at a fast pace since the beginning of this millennium. Due to constraints in the availability of fuel and environmental concerns, the power generation sector has not kept pace with other industrial sectors. One way of increasing the power availability is by reducing the high losses in the existing power transmission and distribution systems. The current increases in the motor windings when the voltages in the three phases are unbalanced. Compensation for reactive power and unbalance in the power distribution system are key factors in improving the power quality to the end user. A Distributed Static Compensator [DSTATCOM] is a custom power device, which is connected in shunt with the load in the distribution system to compensate the reactive power due unbalanced loads. The performance of the DSTATCOM is based on the control technique used for finding the voltage referred and current components to be considered. Voltage compensation is defined as the error in voltage in the grid and that the value of voltage that has to be induced in the grid. This is analyzed by using DSTATCOM for voltage compensation with series converter controller block. This paper gives the simulation of voltage compensation to rectify the issue of voltage swell/sag in order to improve the power quality in the distribution system.


2018 ◽  
Vol 69 ◽  
pp. 01011
Author(s):  
Robert Andrzej Lis

The paper characterizes the issues related to compensation of reactive power measures, which protect the smart microgrids from the loss of voltage stability. Slower forms of voltage instability are analyzed with power distribution simulations. The simulations represent the behavior of the system after preset shutdowns; P-U and Q-U charts are drawn to assess the voltage stability reserve in the given time. The purpose of the compensation is to decrease the reactive power transmission and the losses on the smart grid related to this power. This most often translates into introduction of new sources to achieve the established goal. This paper explains the algorithm for optimization of artificial measures of reactive power compensation with the use of decision trees, which are the primary method of induction education of machines due to their high effectiveness and the capability of a simple programming implementation.


2018 ◽  
Vol 215 ◽  
pp. 01040
Author(s):  
Dasman Dasman

In the distribution of electrical energy from the plant to the consumer, there is a decrease in quality due to the loss of power (losses). These power losses are caused by a voltage drop across the line and subsequently producing a power loss on the line. This power loss can be classified into two types based on its line parameters, i.e., active power loss and reactive power loss. The line’s active power loss generates losses of power/losses so that the active power reaches the load on the receiving end is always less than the productive power of the sender side. Power losses in the electrical system must exist and cannot be reduced to 0% (zero percent). According to SPLN No. 72 of 1987, the permitted distribution network’s power loss should not be higher than 10%. This paper investigates the magnitude of the voltage loss and the line active power losses on the 20 kV distribution line. The calculation conducted through case study and simulation of Etap 12.6 program on an electrical power distribution system that is 20 kV distribution line in PT. PLN (Persero) Rayon Muara Labuh. In the distribution line 20 kV, there is IPP (Independent Power Plant) PLTMH PT SKE used to improve the stress conditions in Rayon Muara Labuh. Therefore the loss of power will be calculated in 3 terms, i.e., before and after IPP PT. SKE with 20 kV distribution lines as well as on feeder load maintenance (as a repair action plan). The simulation results show the highest voltage drop and the highest power losses continue generated during IPP. PT SKE has not done synchronized with the distribution line of 20 kV with a significant voltage drop of 1,533 kV percentage of 7.93% and power loss of 777.528 kWh percentage of 7.69%.


2014 ◽  
Vol 960-961 ◽  
pp. 1077-1080 ◽  
Author(s):  
Bo Lun Wang

Near the load of distribution network access distributed networks, the entire distribution network load distribution will change, system trend then change, then the trend of the distribution network can also be changed from the original "one-way flow" to "two-way flow". For synchronous generator connected to the power distribution network, the input active power and reactive power at the same time to the system, can reduce the loss and the voltage distribution network can play a supporting role, but for asynchronous induction generator connected to the power distribution network, the input to the system active power and reactive power absorption, reduce the power factor of the grid. By trend analysis found that introducing asynchronous induction generator to increase distribution network loss, deterioration in transmission line voltage level. Distributed generators after introducing the distribution network could reduce may also increase the system network loss.


Figure 1 displays a power electronic converter connected to the mains. In general, a power electronic converter is an electrical power converter – controlled or uncontrolled rectifier, AC regulator, compensator of reactive power, converter of phase number, active power filter. The converter supplies a load with power Pout, and in the same time it loads the mains with active power P and total power S.


Author(s):  
Shamala N ◽  
C. Lakshminarayana

The generated electrical power in present days is not able to meet its end-user requirement as power demand is gradually increasing and expected to be increasing more in future days. In the power quality management, the parameters/factors like harmonic currents (HC) and reactive power (RP) yields the major issues in the power distribution units causing transformer heating, line losses, and machine vibration. To overcome these issues, several control mechanisms have been presented and implemented in recent past. The control algorithm based on synchronous reference frame (SRF) offers a better response by dividing the HC and RP. But the SRF based control algorithm requires better synchronization among the utility voltage and input current. To achieve this, the existing researches have used digital signal processing (DSP) and microcontroller, but these systems fail to provide better performance as they face issues like limited sampling time, less accuracy, and high computational complexity. Thus, to enhance the performance of active power filter (APF), we present an FPGA based approach. Also, to validate the performance of the proposed approach, we have used Xilinx 14.7 and Modelsim (6.3f) simulator and compared with other previous work. From the results analysis, it is found that the approach has good performance.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 84
Author(s):  
B Pragathi ◽  
M Suman

Along with Generation of power, distribution of power is equally important.The power produced by the solar farm are utilized only during daytime, the solar farm remain idle during night and operate below capacity in initial morning and late afternoon. A grid connected solar farm uses photovoltaic (PV) arrays for generation of DC power which is transformed to AC using inverter modeling. A FACTS family device STATCOM is centered on a voltage source converter which operates as a rectifier and an inverter is used to enhance steady power transmission limits with reactive power, voltage and damping control. A majorsection of the STATCOM is a voltage source converter which is also anessential element of PV solar module. A novel concept was proposed by which PV solar module can be operated as a STATCOM, known as PV-STATCOM in the night-time and day time. VLSI technology is used to generate the trigger pulses for three phase inverter using the VHDL programming language to generate the signal for the control of inverter section in STATCOM. The HDL compiling and FPGA implementation is done using MATLAB/SIMULINK.  


2019 ◽  
pp. 41-52
Author(s):  
Nikolaus M. Tana ◽  
Frans Likadja ◽  
Wellem F. Galla

The 20 kV medium Voltage overhead lines of Naioni feeder on PT. PLN (Persero) ULP Kupang system has a feed length of ± 79.825 kms and is the longest of all feeders installed in the ULP Kupang. To minimize the voltage drop and power losses on the Naioni Feeder 20 kV medium Voltage overhead lines (SUTM), network reconfiguration needs to be done including changing the diameter of the conductor, installing a transformer insert and installing a capacitor bank using the help of ETAP software. From the results of the study, before reconfiguration, the voltage drop at the end of the Bus_Trafo KB 082 channel was 0.967 kV and the voltage drop percentage was 4.68% while the total power losses at Naioni Feeder were 20 kV, which were active power losses of 48.062 kW and loss reactive power loss of 25,689 kVAR. Furthermore, after reconfiguring the carrying diameter on the channel that still uses a small diameter of 35 mm2, it will be converted to 70 mm2 on cable 17 that connects the KB 119 Transformer Bus channel to the KB 074 Transformer Bus which is a fairly long distance from all other channels. So that after carrying out the reconfiguration of the conductor diameter, the voltage drop at the end of the Bus Trafo KB 082 channel is 0.844 kV and the voltage drop percentage is 4.24%, while the total power losses in the Naioni Feeder are 20 kV which are active power losses of 41.142 kW and conductor reactive power loss of 25.53 kVAR. Furthermore, after installation of the transformer insert and changing the conductor diameter on cable 17 of 35 mm2 will be changed to 70 mm2 connecting the Transformer Bus Channel KB 119 to the KB 074 Transformer Bus, then the voltage drop at the end of the Bus Trafo KB 082 channel is 0.826 kV and the voltage drop percentage amounting to 4.15% while the total power losses at Naioni Feeder are 20 kV, namely active power losses of39.292 kW and reactive power losses of 24.467 kVAR. And then, if the capacitor bank is installed on the Bus Transformer KB 119 channel bus point to the Bus Trafo KB 074 channel, then the voltage drop at the Bus Trafo KB 082 channel end is 0.891 kV and the voltage drop percentage is 4.47%, while the total power losses are The 20 kV Naioni Feeder is an active power loss of 43.714 kW and a reactive power loss of 22.888 kVAR.


Sign in / Sign up

Export Citation Format

Share Document