scholarly journals Energy and Cost Saving of a Photovoltaic-Phase Change Materials (PV-PCM) System through Temperature Regulation and Performance Enhancement of Photovoltaics

Energies ◽  
2014 ◽  
Vol 7 (3) ◽  
pp. 1318-1331 ◽  
Author(s):  
Ahmad Hasan ◽  
Sarah McCormack ◽  
Ming Huang ◽  
Brian Norton
2021 ◽  
Vol 138 (28) ◽  
pp. 50681
Author(s):  
Lijuan Tao ◽  
Sai Chen ◽  
Haihui Liu ◽  
Na Han ◽  
Wei Li ◽  
...  

2019 ◽  
Vol 27 (4) ◽  
pp. 289-298 ◽  
Author(s):  
Yunfei Xu ◽  
Xiaoguang Zhang ◽  
Bogang Wu ◽  
Youguo Xu ◽  
Ruilong Wen ◽  
...  

2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3185-3193
Author(s):  
Sina Dang ◽  
Hongjun Xue ◽  
Xiaoyan Zhang ◽  
Chengwen Zhong

To strengthen the heat and mass transfer capacity and improve the temperature regulation rate, potential storage is taken as the research object in this research to study the heat energy storage of the battery in the low temperature environment. Lattice Boltzmann method is adopted to study the heat energy storage influence mechanism of the temperature regulation system of the low temperature phase-change materials. In addition, the influence of different physical parameters (thermal conductivity and latent heat of phase change) on the thermal insulation of the system in the process of temperature control is revealed. The results show that the mechanism of heat and mass transfer in the process of heat storage and temperature control is related to the different physical properties of phase change materials. The decrease of thermal conductivity and the increase of latent heat of phase change materials will greatly increase the effect of heat energy storage. Therefore, under the action of phase change latent heat, phase change material can effectively extend the holding time of the battery in the low temperature environment.


2020 ◽  
Vol 10 (3) ◽  
pp. 5814-5818
Author(s):  
M. A. Aichouni ◽  
N. F. Alshammari ◽  
N. Ben Khedher ◽  
M. Aichouni

The intermittent nature of renewable energy sources such as solar and wind necessitates integration with energy-storage units to enable realistic applications. In this study, thermal performance enhancement of the finned Cylindrical Thermal Energy Storage (C-TES) with nano-enhanced Phase Change Material (PCM) integrated with the water heating system under Storage, Charging and Discharging (SCD) conditions were investigated experimentally. The effects of the addition of copper oxide (CuO) and aluminum oxide (Al2O3) nanoparticles in PCM on thermal conductivity, specific heat, and on charging and discharging performance rates were theoretically and experimentally investigated and studied in detail. The experimental apparatus utilized paraffin wax as PCM, which was filled in Finned C-TES to conduct the experiments. The experimental results showed a positive improvement compared with the non-nano additive PCM. The significance and originality of this project lies within the evaluation and identification of preferable metal-oxides with higher potential for improving thermal performance.


Sign in / Sign up

Export Citation Format

Share Document