scholarly journals Modularized Three-Phase Semiconductor Transformer with Bidirectional Power Flow for Medium Voltage Application

Energies ◽  
2016 ◽  
Vol 9 (9) ◽  
pp. 668 ◽  
Author(s):  
Do-Hyun Kim ◽  
Byung-Moon Han ◽  
Jun-Young Lee
Author(s):  
H.K. Chiu ◽  
Agileswari K. Ramasamy ◽  
Nadia M.L. Tan ◽  
Matthew Y.W. Teow

<span lang="EN-US">In this paper, a Wavelet modulated isolated two-stage three-phase bidirectional AC-DC converter is proposed for electric vehicle (EV) charging systems. Half-bridge resonant CLLC converter is proposed due to its high efficiency, wide gain range, galvanic isolation and bidirectional power flow. Wavelet modulation technique is used for three-phase six leg AC-DC converter due to its benefits of high DC component and lower harmonic contents. The proposed two-stage converter is developed and simulated in MATLAB Simulink environment. The contribution of this paper is on the implementation and performance analysis of Wavelet modulation in bidirectional AC-DC converters. The results show that Wavelet modulation is suitable to be implemented for the proposed bidirectional converter. The performance of the proposed converter delivers very low output voltage ripple and total harmonic distortion output current of less than 10% which is within the expected results.</span>


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jingang Han ◽  
Xiong Zhou ◽  
Song Lu ◽  
Pinxuan Zhao

The smart grid and electric vehicles (EVs) are widely used all over the world. As the key role, the Vehicle-to-Grid (V2G) has been attracting increasing attention. The bidirectional grid-connected AC/DC converter is one of the indispensable parts in the V2G system, which can realize bidirectional power flow and meet the power quality requirements for grid. A three-phase bidirectional grid-connected AC/DC converter is presented in this paper for V2G systems. It can be used to achieve the bidirectional power flow between EVs and grid, supply reactive power compensation, and smooth the power grid fluctuation. Firstly, the configuration of V2G systems is introduced, and the mathematical model of the AC/DC converter is built. Then, for bidirectional AC/DC converters, the grid voltage feedforward decoupling scheme is applied, and the analysis of PI control strategy is proposed and the controller is designed. The system simulation model is established based on MATLAB/Simulink, and the experiment platform of the bidirectional grid-connected converter for V2G is designed in lab. The simulation and experiment results are shown, and the results evaluate the effectiveness of the model and the performance of the applied control strategy.


2020 ◽  
Author(s):  
Evangelos Pompodakis

<p><b>Conventional power flow (CPF) algorithms assume that the network resistances and reactances remain constant regardless of the weather and loading conditions. Although the impact of the weather in power flow analysis has been recently investigated via the weather-dependent power flow (WDPF) approaches, the magnetic effects in the core of ACSR conductors have not been explicitly considered. ACSR conductors are widely used in distribution networks. Therefore, this manuscript proposes a three-phase weather-dependent power flow algorithm for 4-wire multi-grounded unbalanced microgrids (MGs), which takes into consideration the impact of weather as well as the magnetic effects in the core of ACSR conductors. It is shown that the magnetic effects in the core can significantly influence the power flow results, especially for networks composed of single-layer ACSR conductors. Furthermore, the proposed algorithm explicitly considers the multi-grounded neutral conductor, thus it can precisely simulate unbalanced low voltage (LV) and medium voltage (MV) networks. In addition, the proposed approach is generic and can be applied in both grid-connected and islanded networks. Simulations conducted in a 25-Bus unbalanced LV microgrid highlight the accuracy and benefit of the proposed approach. </b></p>


2020 ◽  
Author(s):  
Evangelos Pompodakis

<p><b>Conventional power flow (CPF) algorithms assume that the network resistances and reactances remain constant regardless of the weather and loading conditions. Although the impact of the weather in power flow analysis has been recently investigated via the weather-dependent power flow (WDPF) approaches, the magnetic effects in the core of ACSR conductors have not been explicitly considered. ACSR conductors are widely used in distribution networks. Therefore, this manuscript proposes a three-phase weather-dependent power flow algorithm for 4-wire multi-grounded unbalanced microgrids (MGs), which takes into consideration the impact of weather as well as the magnetic effects in the core of ACSR conductors. It is shown that the magnetic effects in the core can significantly influence the power flow results, especially for networks composed of single-layer ACSR conductors. Furthermore, the proposed algorithm explicitly considers the multi-grounded neutral conductor, thus it can precisely simulate unbalanced low voltage (LV) and medium voltage (MV) networks. In addition, the proposed approach is generic and can be applied in both grid-connected and islanded networks. Simulations conducted in a 25-Bus unbalanced LV microgrid highlight the accuracy and benefit of the proposed approach. </b></p>


2011 ◽  
Vol 55-57 ◽  
pp. 813-818
Author(s):  
Guang Guo Zhang ◽  
Wei Jiang

The rectifier implements bidirectional power flow, sinusoidal current and unit power factor control in grid side. This paper describes the design and implementation of the current inner-loop and the voltage outer-loop based on space vector pulse width modulation (SVPWM). A control system based on the fuzzy self-tuning PID for three-phase rectifier is proposed in this paper. The new algorithm based on the fuzzy self-tuning PID can improve the performance of the system. Also, the overshoot of the voltage fluctuation is reduced. Simulation and experimentation results show that the validity of the proposed strategy.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2591
Author(s):  
Reza Sabzehgar ◽  
Yaser M. Roshan ◽  
Poria Fajri

A nonlinear sliding-mode controller for a three-phase converter, utilized in plug-in electric vehicles (PEVs), is proposed in this paper. The proposed controller enables the utilized converter to perform multiple functions during different operating modes of the vehicle, i.e., grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes. The bidirectional three-phase converter and the proposed controller operate as a power factor correction circuit, bridgeless boost converter, and rectifier during G2V mode (i.e., plug-in charging), and it operates as a conventional single-stage inverter during V2G mode. The stability analysis of the proposed controller is performed by defining a proper Lyapunov function. The functionality of the proposed nonlinear controller is first evaluated through simulation studies. The feasibility and effectiveness of the proposed control strategy is then validated using an industrial control card through a hardware-in-the-loop (HIL) experimental testbed.


Sign in / Sign up

Export Citation Format

Share Document