scholarly journals A Newly Built Model of an Additive Stem Taper System with Total Disaggregation Model Structure for Dahurian Larch in Northeast China

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1302
Author(s):  
Yanli Xu ◽  
Lichun Jiang ◽  
Muhammad Khurram Shahzad

Stem taper function is an important concept in forest growth and yield modeling, and forest management. However, the additivity of the function and the inherent correlations between stem components (diameter outside bark—dob, diameter inside bark—dib, and double-bark thickness—dbt) are seldom considered. In this paper, a total disaggregation model (TDM) structure was developed based on the well-known Kozak (2004) model to ensure the additivity of the stem components. The reconstructed model was fitted with the data of 1281 felled Dahurian larch trees from three regions of Daxing’anling Mountains in Northeast China. The results from TDM were compared with other additive model structures including adjustment in proportion (AP), non-additive taper models (NAM), and three logical structures of NSUR (AMO, SMI, SMB). The results showed that the difference was significant among the three regions. The performance of TDM was slightly better than those of other model structures. Therefore, TDM was considered as another optimal additive system to estimate stem, bark thickness, and volume predicting for Dahurian larch in Northeast China besides NSUR, a method widely used in calculating additive volume or biomass throughout the world. We believe this work is cutting-edge, and that this methodology can be applied to other tree species.

2017 ◽  
Author(s):  
Bingrui Jia ◽  
Guangsheng Zhou

Abstract. Dahurian larch (Larix gmelinii Rupr.) is the dominant species in both natural and planted forests in northeast China, which situated in the southernmost part of the global boreal forest biome and undergoing the greatest climatically induced changes. Published studies (1965–2015) on tree aboveground growth of Larix gmelinii forests in northeast China were collected in this study, critically reviewed, and a comprehensive growth dataset was developed from 123 sites, which distributed between 40.85° N and 53.47° N in latitude, between 118.20° E and 133.70° E in longitude, between 130 m and 1260 m in altitude. The dataset was composed of 776 entries, including growth data (mean tree height, mean DBH, mean tree volume and/or stand volume) and the associated information, i.e., geographical location (latitude, longitude, altitude, aspect and slope), climate (mean annual temperature (MAT) and mean annual precipitation (MAP)), stand description (origin, stand age, stand density and canopy density), and sample regime (observing year, plot area and number). It would provide quantitative references for plantation management practices and boreal forest growth prediction under future climate change. The DOI for the data is https://doi.org/10.1594/PANGAEA.880984.


2018 ◽  
Vol 10 (2) ◽  
pp. 893-898
Author(s):  
Bingrui Jia ◽  
Guangsheng Zhou

Abstract. Dahurian larch (Larix gmelinii Rupr.) is the dominant species in both natural and planted forests in northeast China, which is situated in the southernmost part of the global boreal forest biome and is undergoing great climatically induced changes. Published studies (1965–2015) on tree above-ground growth of Dahurian larch forests in northeast China were collected in this study and critically reviewed, and a comprehensive growth data set was developed from 122 sites, which are distributed between 40.85 and 53.47∘ N in latitude, between 118.20 and 133.70∘ E in longitude and between 130 and 1260 m in altitude. The data set is composed of 743 entries and includes growth data (mean tree height, mean diameter at breast height (DBH), mean tree volume and/or stand volume) and associated information, i.e., geographical location (latitude, longitude, altitude, aspect and slope), climate (mean annual temperature (MAT) and mean annual precipitation (MAP)), stand description (origin, stand age, stand density and canopy density) and sample regime (observation year, plot area and plot number). It provides a quantitative reference for plantation management practices and boreal forest growth prediction under future climate change. The data set is freely available for noncommercial scientific applications, and the DOI for the data is https://doi.org/10.1594/PANGAEA.880984.


2020 ◽  
Author(s):  
Adrian Norman Goodwin

Abstract Diameter distribution models based on probability density functions are integral to many forest growth and yield systems, where they are used to estimate product volumes within diameter classes. The three-parameter Weibull function with a constrained nonnegative lower bound is commonly used because of its flexibility and ease of fitting. This study compared Weibull and reverse Weibull functions with and without a lower bound constraint and left-hand truncation, across three large unthinned plantation cohorts in which 81% of plots had negatively skewed diameter distributions. Near-optimal lower bounds for the unconstrained Weibull function were negative for negatively skewed data, and the left-truncated Weibull using these bounds was 14.2% more accurate than the constrained Weibull, based on the Kolmogorov-Smirnov statistic. The truncated reverse Weibull fit dominant tree distributions 23.7% more accurately than the constrained Weibull, based on a mean absolute difference statistic. This work indicates that a blind spot may have developed in plantation growth modeling systems deploying constrained Weibull functions, and that left-truncation of unconstrained functions could substantially improve model accuracy for negatively skewed distributions.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 398
Author(s):  
Amna Hussain ◽  
Muhammad Khurram Shahzad ◽  
Lichun Jiang

Crown architecture has long been evaluated for its impact on taper modeling. However, most of the research has focused on a limited number of crown dimensions. This study examined the effect of adding several crown dimensions in improving the diameter and volume estimates of Dahurian larch, Korean spruce, and Manchurian fir in northeast China. The crown dimensions included crown length, crown ratio, crown width, height to live crown base, diameter at the crown base, and crown shape. A well-known taper model of Clark et al. (1991) was fitted to the data of 276 trees from natural stands. To adjust the inherent autocorrelation in the data, we added a third-order continuous-time error structure in the model fit. Model fitting was carried out with the NLMIXED procedure (Non-linear Mixed Procedure), followed by the MODEL procedure of SAS using the generalized nonlinear least-squares method. Fit statistics and graphical assessments were used to evaluate the original and modified models. Above 98% of the total variance of d was explained by the models for all species. The addition of crown variables showed slight improvements for root mean square error (RMSE) values in the analyzed species. The RMSE plots indicated that the models with crown variables slightly improved the diameter and volume predictions for the species but only for the upper stem (>50%–90%). The study demonstrated that crown dimensions influence the stem taper, but the original model of Clark et al. (1991) reasonably realized that effect.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 248
Author(s):  
Tyler Searls ◽  
James Steenberg ◽  
Xinbiao Zhu ◽  
Charles P.-A. Bourque ◽  
Fan-Rui Meng

Models of forest growth and yield (G&Y) are a key component in long-term strategic forest management plans. Models leveraging the industry-standard “empirical” approach to G&Y are frequently underpinned by an assumption of historical consistency in climatic growing conditions. This assumption is problematic as forest managers look to obtain reliable growth predictions under the changing climate of the 21st century. Consequently, there is a pressing need for G&Y modelling approaches that can be more robustly applied under the influence of climate change. In this study we utilized an established forest gap model (JABOWA-3) to simulate G&Y between 2020 and 2100 under Representative Concentration Pathways (RCP) 2.6, 4.5, and 8.5 in the Canadian province of Newfoundland and Labrador (NL). Simulations were completed using the province’s permanent sample plot data and surface-fitted climatic datasets. Through model validation, we found simulated basal area (BA) aligned with observed BA for the major conifer species components of NL’s forests, including black spruce [Picea mariana (Mill.) Britton et al.] and balsam fir [Abies balsamea (L.) Mill]. Model validation was not as robust for the less abundant species components of NL (e.g., Acer rubrum L. 1753, Populus tremuloides Michx., and Picea glauca (Moench) Voss). Our simulations generally indicate that projected climatic changes may modestly increase black spruce and balsam fir productivity in the more northerly growing environments within NL. In contrast, we found productivity of these same species to only be maintained, and in some instances even decline, toward NL’s southerly extents. These generalizations are moderated by species, RCP, and geographic parameters. Growth modifiers were also prepared to render empirical G&Y projections more robust for use under periods of climate change.


2008 ◽  
Vol 84 (5) ◽  
pp. 694-703 ◽  
Author(s):  
Mahadev Sharma ◽  
John Parton ◽  
Murray Woods ◽  
Peter Newton ◽  
Margaret Penner ◽  
...  

The province of Ontario holds approximately 70.2 million hectares of forests: about 17% of Canada’s and 2% of the world’s forests. Approximately 21 million hectares are managed as commercial forests, with an annual harvest in the early part of the decade approaching 200 000 ha. Yield tables developed by Walter Plonski in the 1950s provide the basis for most wood supply calculations and growth projections in Ontario. However, due to changes in legislation, policy, and the planning process, they no longer fully meet the needs of resource managers. Furthermore, Plonski`s tables are not appropriate for the range of silvicultural options now practised in Ontario. In October 1999, the Canadian Ecology Centre- Forestry Research Partnership (CEC-FRP) was formed and initiated a series of projects that collectively aimed at characterizing, quantifying and ultimately increasing the economically available wood supply. Comprehensive, defensible, and reliable forecasts of forest growth and yield were identified as key knowledge gaps. The CEC-FRP, with support from the broader science community and forest industry, initiated several new research activities to address these needs, the results of which are outlined briefly in this paper. We describe new stand level models (e.g., benchmark yield curves, FVS Ontario, stand density management diagrams) that were developed using data collected from permanent sample plots and permanent growth plots established and remeasured during the past 5 decades. Similarly, we discuss new height–diameter equations developed for 8 major commercial tree species that specifically account for stand density. As well, we introduce a CEC-FRP-supported project aimed at developing new taper equations for plantation grown jack pine and black spruce trees established at varying densities. Furthermore, we provide an overview of various projects undertaken to explore measures of site productivity. Available growth intercept and site index equations are being evaluated and new equations are being developed for major commercial tree species as needed. We illustrate how these efforts are advancing Ontario’s growth and yield program and supporting the CEC-FRP in achieving its objective of increasing the supply of fibre by 10% in 10 years while maintaining forest sustainability. Key words: permanent sample plots (PSPs), permanent growth plots (PGPs), normal yield tables, sustainable forest management, NEBIE plot network, forest inventory, Forest Vegetation Simulator


2002 ◽  
Vol 53 (6) ◽  
pp. 643 ◽  
Author(s):  
M. J. Robertson ◽  
J. F. Holland ◽  
S. Cawley ◽  
T. D. Potter ◽  
W. Burton ◽  
...  

Canola tolerant to the triazine group of herbicides is grown widely in Australian broad-acre cropping systems. Triazine-tolerant (TT) cultivars are known to have a yield and oil content penalty compared with non-TT cultivars. This study was designed to elucidate the crop physiological basis for the yield differences between the two types. Two commercial cultivars, near-isogenic for the TT trait, were compared in a detailed growth analysis in the field, and 22 crops were compared for phenology and crop attributes at maturity. In the growth analysis study, the TT trait was found to lower radiation use efficiency, which carried through to less biomass at maturity. There were minimal effects on leaf area development and harvest index, and no effect on canopy radiation extinction. Across the 22 crops, where yield varied from 240 to 3400 kg/ha in the non-TT cultivar, yield was on average 26% less in the TT cultivar due to less biomass produced, as there was no significant effect on harvest index. The difference in oil content (2-5%) was greater in low oil content environments. Flowering was delayed by 2-10 days with a greater delay being in later flowering environments. Quantification of the physiological attributes of TT canola allows the assessment of the productivity of different cultivar types across environments.


Sign in / Sign up

Export Citation Format

Share Document