scholarly journals Growth characteristics of natural and planted Dahurian larch in northeast China

2018 ◽  
Vol 10 (2) ◽  
pp. 893-898
Author(s):  
Bingrui Jia ◽  
Guangsheng Zhou

Abstract. Dahurian larch (Larix gmelinii Rupr.) is the dominant species in both natural and planted forests in northeast China, which is situated in the southernmost part of the global boreal forest biome and is undergoing great climatically induced changes. Published studies (1965–2015) on tree above-ground growth of Dahurian larch forests in northeast China were collected in this study and critically reviewed, and a comprehensive growth data set was developed from 122 sites, which are distributed between 40.85 and 53.47∘ N in latitude, between 118.20 and 133.70∘ E in longitude and between 130 and 1260 m in altitude. The data set is composed of 743 entries and includes growth data (mean tree height, mean diameter at breast height (DBH), mean tree volume and/or stand volume) and associated information, i.e., geographical location (latitude, longitude, altitude, aspect and slope), climate (mean annual temperature (MAT) and mean annual precipitation (MAP)), stand description (origin, stand age, stand density and canopy density) and sample regime (observation year, plot area and plot number). It provides a quantitative reference for plantation management practices and boreal forest growth prediction under future climate change. The data set is freely available for noncommercial scientific applications, and the DOI for the data is https://doi.org/10.1594/PANGAEA.880984.

2017 ◽  
Author(s):  
Bingrui Jia ◽  
Guangsheng Zhou

Abstract. Dahurian larch (Larix gmelinii Rupr.) is the dominant species in both natural and planted forests in northeast China, which situated in the southernmost part of the global boreal forest biome and undergoing the greatest climatically induced changes. Published studies (1965–2015) on tree aboveground growth of Larix gmelinii forests in northeast China were collected in this study, critically reviewed, and a comprehensive growth dataset was developed from 123 sites, which distributed between 40.85° N and 53.47° N in latitude, between 118.20° E and 133.70° E in longitude, between 130 m and 1260 m in altitude. The dataset was composed of 776 entries, including growth data (mean tree height, mean DBH, mean tree volume and/or stand volume) and the associated information, i.e., geographical location (latitude, longitude, altitude, aspect and slope), climate (mean annual temperature (MAT) and mean annual precipitation (MAP)), stand description (origin, stand age, stand density and canopy density), and sample regime (observing year, plot area and number). It would provide quantitative references for plantation management practices and boreal forest growth prediction under future climate change. The DOI for the data is https://doi.org/10.1594/PANGAEA.880984.


2007 ◽  
Vol 49 (1) ◽  
pp. 81-98 ◽  
Author(s):  
Robert E. Vance ◽  
Alwynne B. Beaudoin ◽  
Brian H. Luckman

ABSTRACTSynthesis of available paleoecological studies in the Prairie provinces of Canada indicates that although the peak in postglacial aridity that characterized early Holocene climate of the western foothills and plains had passed, conditions remained warmer and drier than present throughout the region ca. 6000 yr BP Compared to today, treeline elevations were higher and alpine glaciers were reduced in size in the Rocky Mountains, lake levels were lower over much of the Interior Plains, and the grassland and boreal forest ecozones extended north of their present positions. Forest fires were more prevalent ca. 6000 yr BP than they are today, aiding westward migration of jack pine (Pinus banksiana) through the boreal forest and increasing the area occupied by grassland in boreal and montane forest regions. Attempts to quantify the magnitude of 6 ka temperature and precipitation differences have produced variable results, but suggest that mean annual temperature was 0.50°C to 1.50°C higher than today (summer temperature may have been up to 3°C higher) and mean annual precipitation was reduced by 65 mm (or summer precipitation was reduced by 50 mm), compared to present. The nature and scale of these changes suggests that a vigorous zonal atmospheric circulation pattern, similar to that of the 1930s but shifted northward, prevailed at 6 ka.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1302
Author(s):  
Yanli Xu ◽  
Lichun Jiang ◽  
Muhammad Khurram Shahzad

Stem taper function is an important concept in forest growth and yield modeling, and forest management. However, the additivity of the function and the inherent correlations between stem components (diameter outside bark—dob, diameter inside bark—dib, and double-bark thickness—dbt) are seldom considered. In this paper, a total disaggregation model (TDM) structure was developed based on the well-known Kozak (2004) model to ensure the additivity of the stem components. The reconstructed model was fitted with the data of 1281 felled Dahurian larch trees from three regions of Daxing’anling Mountains in Northeast China. The results from TDM were compared with other additive model structures including adjustment in proportion (AP), non-additive taper models (NAM), and three logical structures of NSUR (AMO, SMI, SMB). The results showed that the difference was significant among the three regions. The performance of TDM was slightly better than those of other model structures. Therefore, TDM was considered as another optimal additive system to estimate stem, bark thickness, and volume predicting for Dahurian larch in Northeast China besides NSUR, a method widely used in calculating additive volume or biomass throughout the world. We believe this work is cutting-edge, and that this methodology can be applied to other tree species.


2021 ◽  
Author(s):  
Marie Spohn ◽  
Johan Stendahl

Abstract. While the carbon (C) content of temperate and boreal forest soils is relatively well studied, much less is known about the ratios of C, nitrogen (N), and phosphorus (P) of the soil organic matter, and the abiotic and biotic factors that shape them. Therefore, the aim of this study was to explore carbon, nitrogen, and organic phosphorus (OP) contents and element ratios in temperate and boreal forest soils and their relationships with climate, dominant tree species, and soil texture. For this purpose, we studied 309 forest soils with a stand age >60 years located all over Sweden between 56° N and 68° N. The soils are a representative subsample of Swedish forest soils with a stand age >60 years that were sampled for the Swedish Forest Soil Inventory. We found that the N stock of the organic layer increased by a factor of 7.5 from −2 °C to 7.5 °C mean annual temperature (MAT), it increased almost twice as much as the organic layer stock along the MAT gradient. The increase in the N stock went along with an increase in the N : P ratio of the organic layer by a factor of 2.1 from −2 °C to 7.5 °C MAT (R2 = 0.36, p < 0.001). Forests dominated by pine had higher C : N ratios in the litter layer and mineral soil down to a depth of 65 cm than forests dominated by other tree species. Further, also the C : P ratio was increased in the pine-dominated forests compared to forests dominated by other tree species in the organic layer, but the C : OP ratio in the mineral soil was not elevated in pine forests. C, N and OP contents in the mineral soil were higher in fine-textured soils than in coarse-textured soils by a factor of 2.3, 3.5, and 4.6, respectively. Thus, the effect of texture was stronger on OP than on N and C, likely because OP adsorbs very rigidly to mineral surfaces. Further, we found, that the P and K concentrations of the organic layer were inversely related with the organic layer stock. The C and N concentrations of the mineral soil were best predicted by the combination of MAT, texture, and tree species, whereas the OP concentration was best predicted by the combination of MAT, texture and the P concentration of the parent material in the mineral soil. In the organic layer, the P concentration was best predicted by the organic layer stock. Taken together, the results show that the N : P ratio of the organic layer was most strongly related to MAT. Further, the C : N ratio was most strongly related to dominant tree species, even in the mineral subsoil. In contrast, the C : P ratio was only affected by dominant tree species in the organic layer, but the C : OP ratio in the mineral soil was hardly affected by tree species due to the strong effect of soil texture on the OP concentration.


Author(s):  
Cong He ◽  
Jia-Rui Niu ◽  
Cheng-Tang Xu ◽  
Shou-Wei Han ◽  
Wei Bai ◽  
...  

Northeast China(NEC) is the main grain-producing area in China, but soil degradation is severe due to the long-term use of conventional tillage(CT). It is necessary to restore soil fertility, maintain crop yield, and enhance sustainability using conservation tillage in NEC. However, the integrated effects of conservation tillage on crop yield and SOC under different conditions in NEC are still unclear. Using 70 peer-reviewed papers, we assessed the crop yield and SOC sequestration effect, and their relationship under no-till(NT), ridge tillage(RT), and subsoiling tillage(ST) in NEC. The results indicated that in areas with a mean annual temperature (MAT) < 3℃, yield under NT was significantly lower than CT by 3.7% whereas RT and ST were higher than CT by 0.8% and 13.1% (P<0.05). RT generally had a similar effect on yield as NT, but RT did not have a negative impact on yield in colder regions, indicating that this may be a more suitable conservation tillage practice in these areas. ST may be used in rotation with other tillage measures to maintain crop yield if necessary. NT could increase SOC concentration by 24.1%, 43.9%, and 17.4% under high MAT (>6℃), low mean annual precipitation (MAP) (<500mm), and continuous cropping, respectively. The mean SOC sequestration rate under NT, RT, and ST was 0.953, 0.099, and 0.101 Mg C ha-1 yr-1, respectively. Overall, the implementation of different conservation tillage measures in NEC can enhance crop yield as well as carbon sequestration, indicating its potential to be popularized in NEC.


2019 ◽  
Vol 31 (3) ◽  
pp. 693-712 ◽  
Author(s):  
P. W. West

Abstract Once forests have achieved a full canopy, their growth rate declines progressively with age. This work used a global data set with estimates from a wide range of forest types, aged 20‒795 years, of their annual photosynthetic production (gross primary production, GPP) and subsequent above- plus below-ground biomass production (net primary production, NPP). Both GPP and NPP increased with increasing mean annual temperature and precipitation. GPP was then unrelated to forest age whilst NPP declined progressively with increasing age. These results implied that autotrophic respiration increases with age. It has been proposed that GPP should decline in response to increasing water stress in leaves as water is raised to greater heights as trees grow taller with age. However, trees may make substantial plastic adjustment in morphology and anatomy of newly developing leaves, xylem and fine roots to compensate for this stress and maintain GPP with age. This work reviews the possibilities that NPP declines with age as respiratory costs increase progressively in, any or all of, the construction and maintenance of more complex tissues, the maintenance of increasing amounts of live tissue within the sapwood of stems and coarse roots, the conversion of sapwood to heartwood, the increasing distance of phloem transport, increased turnover rates of fine roots, cost of supporting very tall trees that are unable to compensate fully for increased water stress in their canopies or maintaining alive competitively unsuccessful small trees.


2013 ◽  
Vol 726-731 ◽  
pp. 4266-4269
Author(s):  
Fei Li ◽  
Hua Yong Zhang ◽  
Zhong Yu Wang ◽  
Yang Su ◽  
Lu Han

In order to investigate the effect of stand age and climate hydrothermic factors on aboveground biomass accumulation (ABA), data from 65 typical Pinus tabulaeformis forest stands were compiled from published literatures. By means of stepwise multiple regression, the variations in ABA were examined across the range of stand age and gradients of mean annual precipitation (MAP) and mean annual temperature (MAT). For comparison, stand age was also used as explaining variable alone. The results show that, stand age and MAP could explain 85.1% of variation in ABA, the predictive power is much better than stand age alone. The explanatory power of stand age and MAP were 70.7% and 15.3% respectively. In comparison with stand age, MAP has a relatively poor but significant effect. ABA is not significantly related to MAT, which implies that water availability is more important than thermal condition for ABA of Pinus tabulaeformis forests.


2000 ◽  
Vol 48 (1) ◽  
pp. 27 ◽  
Author(s):  
R. J. Fensham ◽  
P. R. Minchin ◽  
R. J. Fairfax ◽  
J. E. Kemp ◽  
R. W. Purdie ◽  
...  

A large floristic data set was collated from vegetation surveys of Mitchell (Astrebla spp.) grasslands in Queensland spanning more than 20 years. The data was ordinated using non-metric multi-dimensional scaling and a four-dimensional solution could be deciphered. The longest floristic gradient was clearly aligned with climatic variables associated with mean annual precipitation. The vector for mean annual temperature was orientated orthogonally to the primary vector and was strongly correlated through the ordination space. A grazing vector tentatively derived from the frequency of species known to be favoured by grazing in Mitchell grasslands was orthogonal to the major climatic trends. However, the suspected grazing influence is complicated by the potential influence of sites occurring on limited areas of limestone habitat representing marginal Mitchell grassland habitat. A vector derived from the binomial categorisation of landform into downs and alluvia was clearly aligned with the fourth dimension of the ordination. Short- and long-term rainfall history variables were generated for each site from local rainfall records. The oblique trajectory of these variables through the ordination space tends to suggest that they may be artefacts of sampling rather than a major independent influence on the character of Mitchell grasslands. Thus the results at the broad scale of this study do not conform to previous studies at the paddock scale that emphasise the influence of climatic fluctuations on the floristic character of Mitchell grasslands. The results suggest Mitchell grasslands will require conservation planning and action throughout their geographic range.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Hong Wei ◽  
Xiuling Man

The change of litter input can affect soil respiration (Rs) by influencing the availability of soil organic carbon and nutrients, regulating soil microenvironments, thus resulting in a profound influence on soil carbon cycle of the forest ecosystem. We conducted an aboveground litterfall manipulation experiment in different-aged Betula platyphylla forests (25-, 40- and 61-year-old) of the permafrost region, located in the northeast of China, during May to October in 2018, with each stand treated with doubling litter (litter addition, DL), litter exclusion (no-litter, NL) and control litter (CK). Our results indicated that Rs decreased under NL treatment compared with CK treatment. The effect size lessened with the increase in the stand age; the greatest reduction was found for young Betula platyphylla forest (24.46% for 25-year-old stand) and tended to stabilize with the growth of forest with the reduction of 15.65% and 15.23% for 40-and 61- year-old stands, respectively. Meanwhile, under DL treatment, Rs increased by 27.38%, 23.83% and 23.58% on 25-, 40- and 61-year-old stands, respectively. Our results also showed that the increase caused by DL treatment was larger than the reduction caused by NL treatment, leading to a priming effect, especially on 40- and 61-year-old stands. The change in litter input was the principal factor affecting the change of Rs under litter manipulation. The soil temperature was also a main factor affecting the contribution rate of litter to Rs of different-aged stands, which had a significant positive exponential correlation with Rs. This suggests that there is a significant relationship between litter and Rs, which consequently influences the soil carbon cycle in Betula platyphylla forests of the permafrost region, Northeast China. Our finding indicated the increased litter enhanced the Rs in Betula platyphylla forest, which may consequently increase the carbon emission in a warming climate in the future. It is of great importance for future forest management in the permafrost region, Northeast China.


2021 ◽  
Author(s):  
Yuxi Zhong ◽  
Chuanwu Chen ◽  
Yanping Wang

Abstract China is a country with one of the most species rich reptile faunas in the world. However, nearly a quarter of Chinese lizard species assessed by the China Biodiversity Red List are threatened. Nevertheless, to date, no study has explicitly examined the pattern and processes of extinction and threat in Chinese lizards. In this study, we conducted the first comparative phylogenetic analysis of extinction risk in Chinese lizards. We addressed the following three questions: 1) What is the pattern of extinction and threat in Chinese lizards? 2) Which species traits and extrinsic factors are related to their extinction risk? 3) How can we protect Chinese lizards based on our results? We collected data on ten species traits (body size, clutch size, geographic range size, activity time, reproductive mode, habitat specialization, habitat use, leg development, maximum elevation, and elevation range) and seven extrinsic factors (mean annual precipitation, mean annual temperature, mean annual solar insolation, normalized difference vegetation index (NDVI), human footprint, human population density, and human exploitation). After phylogenetic correction, these variables were used separately and in combination to assess their associations with extinction risk. We found that Chinese lizards with small geographic range, large body size, high habitat specialization, and living in high precipitation areas were vulnerable to extinction. Conservation priority should thus be given to species with the above extinction-prone traits so as to effectively protect Chinese lizards. Preventing future habitat destruction should also be a primary focus of management efforts because species with small range size and high habitat specialization are particularly vulnerable to habitat loss.


Sign in / Sign up

Export Citation Format

Share Document