scholarly journals Estimating the Potential Impacts of Climate Change on the Spatial Distribution of Garuga forrestii, an Endemic Species in China

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1708
Author(s):  
Bashir B. Tiamiyu ◽  
Boniface K. Ngarega ◽  
Xu Zhang ◽  
Huajie Zhang ◽  
Tianhui Kuang ◽  
...  

Understanding how species have adapted and responded to past climate provides insights into the present geographical distribution and may improve predictions of how biotic communities will respond to future climate change. Therefore, estimating the distribution and potentially suitable habitats is essential for conserving sensitive species such as Garuga forrestii W.W.Sm., a tree species endemic to China. The potential climatic zones of G. forrestii were modelled in MaxEnt software using 24 geographic points and nine environmental variables for the current and future (2050 and 2070) conditions under two climate representative concentration pathways (RCP4.5 and RCP8.5) scenarios. The resulting ecological niche models (ENMs) demonstrated adequate internal assessment metrics, with all AUC and TSS values being >0.79 and a pROC of >1.534. Our results also showed that the distribution of G. forrestii was primarily influenced by temperature seasonality (% contribution = 12%), elevation (% contribution = 27.5%), and precipitation of the wettest month (% contribution = 35.6%). Our findings also indicated that G. forrestii might occupy an area of 309,516.2 km2 in southwestern China. We note that the species has a potential distribution in three provinces, including Yunnan, Sichuan, and Guangxi. A significant decline in species range is observed under the future worst case of high-emissions scenario (RCP8.5), with about 19.5% and 20% in 2050 and 2070, respectively. Similarly, higher elevations shift northward to southern parts of Sichuan province in 2050 and 2070. Thus, this study helps highlight the vulnerability of the species, response to future climate and provides an insight to assess habitat suitability for conservation management.

The Condor ◽  
2021 ◽  
Author(s):  
Natália Stefanini Da Silveira ◽  
Maurício Humberto Vancine ◽  
Alex E Jahn ◽  
Marco Aurélio Pizo ◽  
Thadeu Sobral-Souza

Abstract Bird migration patterns are changing worldwide due to current global climate changes. Addressing the effects of such changes on the migration of birds in South America is particularly challenging because the details about how birds migrate within the Neotropics are generally not well understood. Here, we aim to infer the potential effects of future climate change on breeding and wintering areas of birds that migrate within South America by estimating the size and elevations of their future breeding and wintering areas. We used occurrence data from species distribution databases (VertNet and GBIF), published studies, and eBird for 3 thrush species (Turdidae; Turdus nigriceps, T. subalaris, and T. flavipes) that breed and winter in different regions of South America and built ecological niche models using ensemble forecasting approaches to infer current and future potential distributions throughout the breeding and wintering periods of each species. Our findings point to future shifts in wintering and breeding areas, mainly through elevational and longitudinal changes. Future breeding areas for T. nigriceps, which migrates along the Andes Mountains, will be displaced to the west, while breeding displacements to the east are expected for the other 2 species. An overall loss in the size of future wintering areas was also supported for 2 of the species, especially for T. subalaris, but an increase is anticipated for T. flavipes. Our results suggest that future climate change in South America will require that species shift their breeding and wintering areas to higher elevations in addition to changes in their latitudes and longitude. Our findings are the first to show how future climate change may affect migratory birds in South America throughout the year and suggest that even closely related migratory birds in South America will be affected in different ways, depending on the regions where they breed and overwinter.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Pradeep Adhikari ◽  
Ja-Young Jeon ◽  
Hyun Woo Kim ◽  
Man-Seok Shin ◽  
Prabhat Adhikari ◽  
...  

Abstract Background Invasive plant species are considered a major threat to biodiversity, ecosystem functioning, and human wellbeing worldwide. Climatically suitable ranges for invasive plant species are expected to expand due to future climate change. The identification of current invasions and potential range expansion of invasive plant species is required to plan for the management of these species. Here, we predicted climatically suitable habitats for 11 invasive plant species and calculated the potential species richness and their range expansions in different provinces of the Republic of Korea (ROK) under current and future climate change scenarios (RCP 4.5 and RCP 8.5) using the maximum entropy (MaxEnt) modeling approach. Results Based on the model predictions, areas of climatically suitable habitats for 90.9% of the invasive plant species are expected to retain current ecological niches and expand to include additional climatically suitable areas under future climate change scenarios. Species richness is predicted to be relatively high in the provinces of the western and southern regions (e.g., Jeollanam, Jeollabuk, and Chungcheongnam) under current climatic conditions. However, under future climates, richness in the provinces of the northern, eastern, and southeastern regions (e.g., Seoul, Incheon, Gyeonggi, Gyeongsangnam, Degue, Busan, and Ulsan) is estimated to increase up to 292%, 390.75%, and 468.06% by 2030, 2050, and 2080, respectively, compared with the current richness. Conclusions Our study revealed that the rates of introduction and dispersion of invasive plant species from the western and southern coasts are relatively high and are expanding across the ROK through different modes of dispersion. The negative impacts on biodiversity, ecosystem dynamics, and economy caused by invasive plant species will be high if preventive and eradication measures are not employed immediately. Thus, this study will be helpful to policymakers for the management of invasive plant species and the conservation of biodiversity.


2021 ◽  
Author(s):  
Jiming Liu ◽  
Lianchun Wang ◽  
Caowen Sun ◽  
Benye Xi ◽  
Doudou Li ◽  
...  

Abstract Sapindus (Sapindus L.) is a widely distributed economically important tree genus that provides biodiesel, biomedical and biochemical products. However, with climate change, deforestation, and economic development, Sapindus germplasm resources have been lost. Therefore, utilising historical environmental data and future climate projections from the BCC-CSM2-MR global climate database, we simulated the present and future global distributions of suitable habitats for Sapindus using a Maximum Entropy (MaxEnt) model. The estimated ecological thresholds for critical environmental factors were: a minimum temperature of 0–20°C in the coldest month, soil moisture levels of 40–140 mm, a mean temperature of 2–25°C in the driest quarter, a mean temperature of 19–28°C in the wettest quarter, and a soil pH of 5.6–7.6. The total suitable habitat area was 6059.97 × 104 km2, which was unevenly distributed across six continents. As greenhouse gas emissions increased over time, the area of suitable habitats contracted in lower latitudes and expanded in higher latitudes. Consequently, surveys and conservation should be prioritised in southern hemisphere areas which are in danger of becoming unsuitable. In contrast, other areas in northern and central America, China, and India can be used for conservation and large-scale cultivation in the future.


2019 ◽  
Vol 27 (6) ◽  
pp. 595-606
Author(s):  
Zhang Xiaoling ◽  
Li Yichao ◽  
Wang Yunyun ◽  
Cai Hongyu ◽  
Zeng Hui ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3332
Author(s):  
Naxun Zhao ◽  
Ximing Zhang ◽  
Guoyu Shan ◽  
Xinping Ye

Understanding how climate change alters the spatial aggregation of sympatric species is important for biodiversity conservation. Previous studies usually focused on spatial shifting of species but paid little attention to changes in interspecific competitions under climate change. In this study, we evaluated the potential effects of climate change on the spatial aggregation of giant pandas (Ailuropoda melanoleuca) and three sympatric competitive species (i.e., black bears (Ursus thibetanus), golden takins (Budorcas taxicolor), and wild boars (Sus scrofa)) in the Qinling Mountains, China. We employed an ensemble species distribution modeling (SDM) approach to map the current spatial distributions of giant pandas and sympatric animals and projected them to future climate scenarios in 2050s and 2070s. We then examined the range overlapping and niche similarities of these species under different climate change scenarios. The results showed that the distribution areas of giant pandas and sympatric species would decrease remarkably under future climate changes. The shifting directions of the overlapping between giant pandas and sympatric species vary under different climate change scenarios. In conclusion, future climate change greatly shapes the spatial overlapping pattern of giant pandas and sympatric species in the Qinling Mountains, while interspecific competition would be intensified under both mild and worst-case climate change scenarios.


2006 ◽  
Vol 106 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Michael B. Jones ◽  
Alison Donnelly ◽  
Fabrizio Albanito

2002 ◽  
Vol 19 ◽  
pp. 179-192 ◽  
Author(s):  
M Lal ◽  
H Harasawa ◽  
K Takahashi

Sign in / Sign up

Export Citation Format

Share Document