scholarly journals Mapping Fusiform Rust Resistance Genes within a Complex Mating Design of Loblolly Pine

Forests ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 347-362 ◽  
Author(s):  
Tania Quesada ◽  
Marcio Resende Jr. ◽  
Patricio Muñoz ◽  
Jill Wegrzyn ◽  
David Neale ◽  
...  
Author(s):  
Daniel Ence ◽  
Katherine E Smith ◽  
Shenghua Fan ◽  
Leandro Gomide Neves ◽  
Robin Paul ◽  
...  

Abstract Resistance to fusiform rust disease in loblolly pine (Pinus taeda) is a classic gene-for-gene system. Early resistance gene mapping in the P. taeda family 10-5 identified RAPD markers for a major fusiform rust resistance gene, Fr1. More recently SNP markers associated with resistance were mapped to a full-length gene model in the loblolly pine genome encoding for an NLR protein. NLR genes are one of the most abundant gene families in plant genomes and are involved in effector-triggered immunity. Inter- and intraspecies studies of NLR gene diversity and expression have resulted in improved disease resistance. To characterize NLR gene diversity and discover potential resistance genes, we assembled de novo transcriptomes from 92 loblolly genotypes from across the natural range of the species. In these transcriptomes, we identified novel NLR transcripts that are not present in the loblolly pine reference genome and found significant geographic diversity of NLR genes providing evidence of gene family-evolution. We designed capture probes for these NLRs to identify and map SNPs that stably cosegregate with resistance to the SC20-21 isolate of Cronartium quercuum f.sp. fusiforme (Cqf) in half-sib progeny of the 10-5 family. We identified ten SNPs and two QTL associated with resistance to SC20-21 Cqf. The geographic diversity of NLR genes provides evidence of NLR gene family-evolution in loblolly pine. The SNPs associated with rust resistance provide a resource to enhance breeding and deployment of resistant pine seedlings.


2010 ◽  
Vol 36 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Hong ZHANG ◽  
Zhi-Long REN ◽  
Yin-Gang HU ◽  
Chang-You WANG ◽  
Wan-Quan JI

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Mehran Patpour

Following emergence of Ug99, the new virulent race of Puccinia graminis f. sp. tritici in Africa, a global effort for identification and utilization of new sources of Ug99-resistant germplasm has been undertaken. In this study, we conducted replicated experiments to evaluate the resistance of Iranian wheat germplasm to the TTKSK lineage of the Ug99 race of P. graminis f. sp. tritici. We also evaluated for presence of stem rust resistance genes (i.e., Sr2, Sr24, Sr26, Sr38, Sr39, Sr31, and Sr1RSAmigo) in wheat cultivars and breeding lines widely cultivated in Iran. Our phenotyping data revealed high levels of susceptibility to Ug99 in Iranian bread wheat germplasm. Our genotyping data revealed that Iranian cultivars do not carry Sr24, Sr26, or Sr1RSAmigo. Only a few salt-tolerant cultivars and breeding lines tested positively for Sr2, Sr31, Sr38, or Sr39 markers. In conclusion, the genetic basis for resistance to Ug99 in Iranian wheat cultivars was found to be vulnerable. Acquiring knowledge about existing resistance genes and haplotypes in wheat cultivars and breeding lines will help breeders, cereal pathologists, and policy makers to select and pyramid effective stem rust resistance genes.


Genome ◽  
2008 ◽  
Vol 51 (11) ◽  
pp. 922-927 ◽  
Author(s):  
P. G. Luo ◽  
X. Y. Hu ◽  
Z. L. Ren ◽  
H. Y. Zhang ◽  
K. Shu ◽  
...  

Stripe rust, caused by Puccinia striiormis Westend f. sp. tritici, is one of the most important foliar diseases of wheat ( Triticum aestivum L.) worldwide. Stripe rust resistance genes Yr27, Yr31, YrSp, YrV23, and YrCN19 on chromosome 2BS confer resistance to some or all Chinese P. striiormis f. sp. tritici races CYR31, CYR32, SY11-4, and SY11-14 in the greenhouse. To screen microsatellite (SSR) markers linked with YrCN19, F1, F2, and F3 populations derived from cross Ch377/CN19 were screened with race CYR32 and 35 SSR primer pairs. Linkage analysis indicated that the single dominant gene YrCN19 in cultivar CN19 was linked with SSR markers Xgwm410, Xgwm374, Xwmc477, and Xgwm382 on chromosome 2BS with genetic distances of 0.3, 7.9, 12.3, and 21.2 cM, respectively. Crosses of CN19 with wheat lines carrying other genes on chromosome 2B showed that all were located at different loci. YrCN19 is thus different from the other reported Yr genes in chromosomal location and resistance response and was therefore named Yr41. Prospects and strategies of using Yr41 and other Yr genes in wheat improvement for stripe rust resistance are discussed.


2019 ◽  
Author(s):  
Geleta Dugassa Barka ◽  
Eveline Teixeira Caixeta ◽  
Sávio Siqueira Ferreira ◽  
Laércio Zambolim

AbstractPhysiology-based differentiation of SH genes and Hemileia vastatrix races is the principal method employed for the characterization of coffee leaf rust resistance. Based on the gene-for-gene theory, nine major rust resistance genes (SH1-9) have been proposed. However, these genes have not been characterized at the molecular level. Consequently, the lack of molecular data regarding rust resistance genes or candidates is a major bottleneck in coffee breeding. To address this issue, we screened a BAC library with resistance gene analogs (RGAs), identified RGAs, characterized and explored for any SH related candidate genes. Herein, we report the identification and characterization of a gene (gene 11), which shares conserved sequences with other SH genes and displays a characteristic polymorphic allele conferring different resistance phenotypes. Furthermore, comparative analysis of the two RGAs belonging to CC-NBS-LRR revealed more intense diversifying selection in tomato and grape genomes than in coffee. For the first time, the present study has unveiled novel insights into the molecular nature of the SH genes, thereby opening new avenues for coffee rust resistance molecular breeding. The characterized candidate RGA is of particular importance for further biological function analysis in coffee.


Plant Disease ◽  
2021 ◽  
Author(s):  
Tyler Gordon ◽  
Yue Jin ◽  
Samuel Gale ◽  
Matthew Rouse ◽  
Samuel Stoxen ◽  
...  

Wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) is a widespread and recurring threat to wheat production. Emerging Pgt variants are rapidly overcoming major gene resistance deployed in wheat cultivars and new sources of race-nonspecific resistance are urgently needed. The National Small Grains Collection (NSGC) contains thousands of wheat landrace accessions that may harbor unique and broadly effective sources of resistance to emerging Pgt variants. All NSGC available facultative and winter-habit bread wheat landraces were tested in a field nursery in St. Paul, MN against a bulk collection of six common U.S. Pgt races. Infection response and severity data were collected on 9,192 landrace accessions at the soft-dough stage and resistant accessions were derived from single spikes. Derived accessions were tested in St. Paul a second time to confirm resistance and in a field nursery in Njoro, Kenya against emerging races of Pgt with virulence to many known resistance genes including Sr24, Sr31, Sr38, and SrTmp. Accessions resistant in the St. Paul field were also tested at the seedling stage with up to 13 Pgt races, including TTKSK and TKTTF, and with 19 molecular markers linked with known stem rust resistance genes or genes associated with modern breeding practices. Forty-five accessions were resistant in both U.S. and Kenya field nurseries and lacked alleles linked with known stem rust resistance genes. Accessions with either moderate or strong resistance in the U.S. and Kenya field nurseries and with novel seedling resistance will be prioritized for further study.


Crop Science ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 282-302 ◽  
Author(s):  
Matthew J. Martin ◽  
Oswaldo Chicaiza ◽  
Juan C. Caffarel ◽  
Ahmad H. Sallam ◽  
Arnis Druka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document