scholarly journals Additive Biomass Equations Based on Different Dendrometric Variables for Two Dominant Species (Larix gmelini Rupr. and Betula platyphylla Suk.) in Natural Forests in the Eastern Daxing’an Mountains, Northeast China

Forests ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 261 ◽  
Author(s):  
Lihu Dong ◽  
Lianjun Zhang ◽  
Fengri Li

2018 ◽  
Vol 75 (2) ◽  
Author(s):  
Xiuwei Wang ◽  
Dehai Zhao ◽  
Guifen Liu ◽  
Chengjun Yang ◽  
R. O. Teskey


2019 ◽  
pp. 274-286 ◽  
Author(s):  
Muhammad Khurram Shahzad ◽  
Amna Hussain ◽  
Lichun Jiang

Stem taper functions are valuable tools for the study of stem profile and predict volume estimates. Such functions have long been analyzed for different birch species in the world. However, Asian white birch (Betula platyphylla Suk.) has not yet been investigated as an individual species in China or abroad. This study presents stem taper and volume equations for B. platyphylla in Northeast China. Eight commonly used taper functions were fit to the data of 615 destructively sampled trees from two regions of Northeast China. A second-order continuous autoregressive error structure was incorporated to address the autocorrelation in the data and to achieve the valid parameter estimation. The condition number was used to detect the multicollinearity in the models. The taper functions were compared in terms of overall evaluation statistics and by examining the box plots of diameter and volume residuals against relative heights and diameter classes. The equations of A. Kozak (2004, For. Chron. 80(4): 507–515; model 2), Z. Fang et al. (2000, For. Sci. 46(1): 1–12), and H. Bi (2000, For. Sci. 46(3): 397–409) were the leading models for diameter and volume estimates. Overall, the equation of Z. Fang et al. (2000, For. Sci. 46(1): 1–12) exhibited the best results for estimating diameter and total and merchantable volumes in terms of statistical performance and lower multicollinearity.



Author(s):  
Muhammad Khurram Shahzad ◽  
Amna Hussain ◽  
Harold E. Burkhart ◽  
Fengri Li ◽  
Lichun Jiang


Forests ◽  
2017 ◽  
Vol 8 (9) ◽  
pp. 334 ◽  
Author(s):  
Shenglei Guo ◽  
Dehui Zhang ◽  
Huanyong Wei ◽  
Yinan Zhao ◽  
Yibo Cao ◽  
...  


Author(s):  
Yuanyuan Wang ◽  
Hui Wen ◽  
Kai Wang ◽  
Jingxue Sun ◽  
Jinghua Yu ◽  
...  

AbstractForests in Northeast China in the Greater and Lesser Khingan Mountains (GKM and LKM) account for nearly 1/3 of the total state-owned forests in the country. Regional and historical comparisons of forest plants and macrofungi will favor biological conservation, forest management and economic development. A total of 1067 sampling plots were surveyed on forest composition and structure, with a macrofungi survey at Liangshui and Huzhong Nature Reserves in the center of two regions. Regional and historical differences of these parameters were analyzed with a redundancy ordination of their complex associations. There were 61–76 families, 189–196 genera, and 369–384 species, which was only 1/3 of the historical records. The same dominant species were larch and birch with Korean pine (a climax species) less as expected from past surveys in the LKM. Shrub and herb species were different in the two regions, as expected from historical records. There was 10–50% lower species diversity (except for herb evenness), but 1.8- to 4-time higher macrofungi diversity in the GKM. Compared with the LKM, both tree heights and macrofungi density were higher. Nevertheless, current heights averaging 10 m are half of historical records (> 20 m in the 1960s). Edible macrofungi were the highest proportion in both regions, about twice that of other fungal groups, having important roles in the local economy. A major factor explaining plant diversity variations in both regions was herb cover, followed by shrubs in the GKM and herb-dominant species in the LKM. Factors responsible for macrofungi variations were tree density and shrub height. Vaccinium vitis-idaea and Larix gmelinii in the GKM but tree size and diversity were important factors in the LKM. Our findings highlighted large spatial and historical differences between the GKM and LKM in plant-macrofungal composition, forest structure, and their complex associations, which will favor precise conservation and management of forest resources in two region in the future.



Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 89
Author(s):  
Hong Wei ◽  
Xiuling Man

The change of litter input can affect soil respiration (Rs) by influencing the availability of soil organic carbon and nutrients, regulating soil microenvironments, thus resulting in a profound influence on soil carbon cycle of the forest ecosystem. We conducted an aboveground litterfall manipulation experiment in different-aged Betula platyphylla forests (25-, 40- and 61-year-old) of the permafrost region, located in the northeast of China, during May to October in 2018, with each stand treated with doubling litter (litter addition, DL), litter exclusion (no-litter, NL) and control litter (CK). Our results indicated that Rs decreased under NL treatment compared with CK treatment. The effect size lessened with the increase in the stand age; the greatest reduction was found for young Betula platyphylla forest (24.46% for 25-year-old stand) and tended to stabilize with the growth of forest with the reduction of 15.65% and 15.23% for 40-and 61- year-old stands, respectively. Meanwhile, under DL treatment, Rs increased by 27.38%, 23.83% and 23.58% on 25-, 40- and 61-year-old stands, respectively. Our results also showed that the increase caused by DL treatment was larger than the reduction caused by NL treatment, leading to a priming effect, especially on 40- and 61-year-old stands. The change in litter input was the principal factor affecting the change of Rs under litter manipulation. The soil temperature was also a main factor affecting the contribution rate of litter to Rs of different-aged stands, which had a significant positive exponential correlation with Rs. This suggests that there is a significant relationship between litter and Rs, which consequently influences the soil carbon cycle in Betula platyphylla forests of the permafrost region, Northeast China. Our finding indicated the increased litter enhanced the Rs in Betula platyphylla forest, which may consequently increase the carbon emission in a warming climate in the future. It is of great importance for future forest management in the permafrost region, Northeast China.



2019 ◽  
Vol 198 ◽  
pp. 34-45 ◽  
Author(s):  
Weifeng Gao ◽  
Yunlong Yao ◽  
Hong Liang ◽  
Liquan Song ◽  
Houcai Sheng ◽  
...  


2005 ◽  
Vol 52 (2) ◽  
pp. 171-175 ◽  
Author(s):  
Z.-J. Mao ◽  
Y.-J. Wang ◽  
X.-W. Wang ◽  
P. Yu. Voronin


2012 ◽  
Vol 61 (1-6) ◽  
pp. 1-9 ◽  
Author(s):  
Kaixuan Zhang ◽  
Dan Wang ◽  
Chuanping Yang ◽  
Guanjun Liu ◽  
Guifeng Liu ◽  
...  

AbstractA linkage map for Betula platyphylla Suk was constructed based on RAPD, ISSR, AFLP and SSR markers by a pseudo-testcross mapping strategy. A F1segregating population including 80 progenies was obtained from the cross between two superior trees selected from Qinghai and Wangqing provenance, respectively. The paternal map was constructed with 282 markers consisting of 14 major and 15 minor (5 triplets and 10 doublets) linkage groups and spanning 1131 cM at an average distance of 4.0 cM between adjacent markers. The maternal map has 277 markers consisting of 15 major and 8 minor (5 triplets and 3 doublets) groups covering 1288 cM at an average distance of 4.6 cM between adjacent markers. In the same pedigree we investigated association of genetic markers with seedling stem height and circumference. The composite interval mapping was used to detect the number of quantitative trait loci and their position on the genetic linkage maps. Three QTLs (one on the male map and two on the female map) were found explaining 13.4%, 17.5% and 18.8% of the trait variation, respectively.



Sign in / Sign up

Export Citation Format

Share Document