scholarly journals Evaluation of the Water-Storage Capacity of Bryophytes along an Altitudinal Gradient from Temperate Forests to the Alpine Zone

Forests ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 433
Author(s):  
Yoshitaka Oishi

Forests play crucial roles in regulating the amount and timing of streamflow through the water storage function. Bryophytes contribute to this increase in water storage owing to their high water-holding capacity; however, they might be severely damaged by climate warming. This study examined the water storage capacity (WSC) of bryophytes in forests in the mountainous areas of Japan. Sampling plots (100 m2) were established along two mountainous trails at 200-m altitude intervals. Bryophytes were sampled in these plots using 100-cm2 quadrats, and their WSC was evaluated according to the maximum amount of water retained in them (WSC-quadrat). The total amount of water in bryophytes within each plot (WSC-plot) was then calculated. The WSC-quadrat was affected by the forms of bryophyte communities (life forms) and their interactions, further influencing soil moisture. The WSC-quadrat did not show any significant trend with altitude, whereas, the highest WSC-plot values were obtained in subalpine forests. These changes to WSC-plot were explained by large differences in bryophyte cover with altitude. As the WSC controlled by the life forms might be vulnerable to climate warming, it can provide an early indicator of how bryophyte WCS and associated biological activities are influenced.

Soil Research ◽  
1999 ◽  
Vol 37 (5) ◽  
pp. 965 ◽  
Author(s):  
B. Addison ◽  
M. Boyes ◽  
P. L. Singleton

Particle density is used to calculate total soil porosity and related measurements such as macroporosity and water storage capacity. Methods for measuring particle density often advise using dry samples. This study measured particle density by displacement of water using both field-moist and oven-dry samples from 4 New Zealand Allophanic Soils. There were significant differences in particle density between the 2 methods. Oven-dry samples under-estimated particle density by up to 0.33 Mg/m 3 and as a result, calculations of porosity were under-estimated by up to 0.05 m 3/m 3 . Under-estimation of porosity can result in incorrect interpretation of a soil's aeration and water holding status. Allophanic Soils are known to undergo irreversible physical changes on drying and it is likely that these changes caused the difference in measurements. Only field-moist samples should be used to determine particle density of Allophanic Soils to ensure accurate calculation of soil porosity.


2013 ◽  
Vol 726-731 ◽  
pp. 3690-3696
Author(s):  
Jia Xiang Che ◽  
An Ding Li ◽  
Jian Li Zhang

The study was conducted in arbor forests, arbor-shrub forests and shrub lands in Karst peak-cluster depression areas. We investigated soil property and water-holding capacity in the three types of woodland by means of cutting-ring and water immersion. Our results show that soil bulk density presents an increasing trend along with soil layers deepening, while total soil porosity, capillary porosity and non-capillary porosity decrease. Natural water-holding capacity of soil, saturation water-holding capacity of soil, water-storage capacity of capillary and soil water storage capacity decline with deeper soil layers in all the three forests. Water-holding capacity and immersion time of soil meet the equation Y=kln (X)+b and the equation Y=k(X)-b fits water absorption rate and soaking time of soil well.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Chen ◽  
Xue-wen Lei ◽  
Han-lin Zhang ◽  
Zhi Lin ◽  
Hui Wang ◽  
...  

AbstractThe problems caused by the interaction between slopes and hydrologic environment in traffic civil engineering are very serious in the granite residual soil area of China, especially in Guangdong Province. Against the background of two heavy rainfall events occurring during a short period due to a typhoon making landfall twice or even two typhoons consecutively making landfall, laboratory model tests were carried out on the hydrological effects of the granite residual soil slope considering three vegetation types under artificial rainfall. The variation in slope surface runoff, soil moisture content and rain seepage over time was recorded during the tests. The results indicate that surface vegetation first effectively reduces the splash erosion impact of rainwater on slopes and then influences the slope hydrological effect through rainwater forms adjustment. (1) The exposed slope has weak resistance to two consecutive heavy rains, the degree of slope scouring and soil erosion damage will increase greatly during the second rainfall. (2) The multiple hindrances of the stem leaf of Zoysia japonica plays a leading role in regulating the hydrological effect of slope, the root system has little effect on the permeability and water storage capacity of slope soil, but improves the erosion resistance of it. (3) Both the stem leaf and root system of Nephrolepis cordifolia have important roles on the hydrological effect. The stem leaf can stabilize the infiltration of rainwater, and successfully inhibit the surface runoff under continuous secondary heavy rainfall. The root system significantly enhances the water storage capacity of the slope, and greatly increases the permeability of the slope soil in the second rainfall, which is totally different from that of the exposed and Zoysia japonica slopes. (4) Zoysia is a suitable vegetation species in terms of slope protection because of its comprehensive slope protection effect. Nephrolepis cordifolia should be cautiously planted as slope protection vegetation. Only on slopes with no stability issues should Nephrolepis cordifolia be considered to preserve soil and water.


2021 ◽  
Author(s):  
Harro Joseph Jongen ◽  
Gert-Jan Steeneveld ◽  
Jason Beringer ◽  
Andreas Christen ◽  
Krzysztof Fortuniak ◽  
...  

2021 ◽  
Author(s):  
Harro Jongen ◽  
Gert-Jan Steeneveld ◽  
Jason Beringer ◽  
Krzysztof Fortuniak ◽  
Jinkyu Hong ◽  
...  

<p>The amount and dynamics of urban water storage play an important role in mitigating urban flooding and heat. Assessment of the capacity of cities to store water remains challenging due to the extreme heterogeneity of the urban surface. Evapotranspiration (ET) recession after rainfall events during the period without precipitation, over which the amount of stored water gradually decreases, can provide insight on the water storage capacity of urban surfaces. Assuming ET is the only outgoing flux, the water storage capacity can be estimated based on the timescale and intercept of its recession. In this paper, we test the proposed approach to estimate the water storage capacity at neighborhood scale with latent heat flux data collected by eddy covariance flux towers in eleven contrasting urban sites with different local climate zones, vegetation cover and characteristics and background climates (Amsterdam, Arnhem, Basel, Berlin, Helsinki, Łódź, Melbourne, Mexico City, Seoul, Singapore, Vancouver). Water storage capacities ranging between 1 and 12 mm were found. These values correspond to e-folding timescales lasting from 2 to 10 days, which translate to half-lives of 1.5 to 7 days. We find ET at the start of a drydown to be positively related to vegetation fraction, and long timescales and large storage capacities to be associated with higher vegetation fractions. According to our results, urban water storage capacity is at least one order of magnitude smaller than the known water storage capacity in natural forests and grassland.</p>


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1674
Author(s):  
Anna Ilek ◽  
Małgorzata Szostek ◽  
Anna Mikołajczyk ◽  
Marta Rajtar

During the last decade, tree species mixing has been widely supported as a silvicultural approach to reduce drought stress. However, little is known on the influence of tree species mixing on physical properties and the water storage capacity of forest soils (including the forest floor). Thus, the study aimed to analyze the effect of mixing pine needles and oak leaves and mixing fir needles and beech leaves on hydro-physical properties of the litter layer during laboratory tests. We used fir-beech and pine-oak litter containing various shares of conifer needles (i.e., 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%) to determine the influence of the needle admixture on bulk density, total porosity, macroporosity, water storage capacity, the amount of water stored in pores between organic debris and the degree of saturation of mixed litter compared to broadleaf litter (oak or beech). We found that the admixture of fir needles increased the bulk density of litter from 7.9% with a 5% share of needles to 55.5% with a 50% share (compared to pure beech litter), while the share of pine needles < 40% caused a decrease in bulk density by an average of 3.0–11.0% (compared to pure oak litter). Pine needles decreased the water storage capacity of litter by about 13–14% with the share of needles up to 10% and on average by 28% with the 40 and 50% shares of pine needles in the litter layer. Both conifer admixtures reduced the amount of water stored in the pores between organic debris (pine needles more than fir needles).


Sign in / Sign up

Export Citation Format

Share Document