scholarly journals Species Richness of the Family Ericaceae along an Elevational Gradient in Yunnan, China

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 511 ◽  
Author(s):  
Ji-Hua Wang ◽  
Yan-Fei Cai ◽  
Lu Zhang ◽  
Chuan-Kun Xu ◽  
Shi-Bao Zhang

Knowledge about how species richness varies along spatial and environmental gradients is important for the conservation and use of biodiversity. The Ericaceae is a major component of alpine and subalpine vegetation globally. However, little is known about the spatial pattern of species richness and the factors that drive that richness in Ericaceae. We investigated variation in species richness of Ericaceae along an elevational gradient in Yunnan, China, and used a variation partitioning analysis based on redundancy analysis ordination to examine how those changes might be influenced by the mid-domain effect, the species-area relationship, and climatic variables. Species richness varied significantly with elevation, peaking in the upper third of the elevational gradient. Of the factors examined, climate explained a larger proportion of the variance in species richness along the elevational gradient than either land area or geometric constraints. Species richness showed a unimodal relationship with mean annual temperature and mean annual precipitation. The elevational pattern of species richness for Ericaceae was shaped by the combined effects of climate and competition. Our findings contribute to a better understanding of the potential effects of climate change on species richness for Ericaceae.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7858 ◽  
Author(s):  
Miguel Camacho-Sanchez ◽  
Melissa T.R. Hawkins ◽  
Fred Tuh Yit Yu ◽  
Jesus E. Maldonado ◽  
Jennifer A. Leonard

Mountains offer replicated units with large biotic and abiotic gradients in a reduced spatial scale. This transforms them into well-suited scenarios to evaluate biogeographic theories. Mountain biogeography is a hot topic of research and many theories have been proposed to describe the changes in biodiversity with elevation. Geometric constraints, which predict the highest diversity to occur in mid-elevations, have been a focal part of this discussion. Despite this, there is no general theory to explain these patterns, probably because of the interaction among different predictors with the local effects of historical factors. We characterize the diversity of small non-volant mammals across the elevational gradient on Mount (Mt.) Kinabalu (4,095 m) and Mt. Tambuyukon (2,579 m), two neighboring mountains in Borneo, Malaysia. We documented a decrease in species richness with elevation which deviates from expectations of the geometric constraints and suggests that spatial factors (e.g., larger diversity in larger areas) are important. The lowland small mammal community was replaced in higher elevations (from above ~1,900 m) with montane communities consisting mainly of high elevation Borneo endemics. The positive correlation we find between elevation and endemism is concordant with a hypothesis that predicts higher endemism with topographical isolation. This supports lineage history and geographic history could be important drivers of species diversity in this region.


1999 ◽  
Vol 15 (5) ◽  
pp. 689-694 ◽  
Author(s):  
Jon C. Lovett

Observed variation in species richness on ecological gradients and between regions has attracted several different explanations. Climatic factors, such as energy availability, precipitation and mean annual temperature, are frequently cited to explain differences in species richness (Wright et al. 1993). The relative amount of variation in these variables may be of importance as well as absolute values (Stevens 1989, 1992). Alternatively, the history of colonization and extirpation have been used to explain regional variation in diversity (Guo et al. 1998; Latham & Ricklefs 1993a, b). Area is an important factor, for example on an elevational gradient the tops of mountains are not only cooler than the bottoms, but they are also much smaller (Rahbek 1997).


2021 ◽  
Author(s):  
Xiaoqin Yang ◽  
Yue Li ◽  
Bin Niu ◽  
Qiuyu Chen ◽  
Yilun Hu ◽  
...  

Abstract Understanding the mechanisms underlying biodiversity patterns is a central issue in ecology, while how temperature and precipitation jointly control the elevational patterns of microbes is understudied. Here, we studied the effects of temperature, precipitation and their interactions on the alpha and beta diversity of soil archaea and bacteria in alpine grasslands along an elevational gradient of 4,300-5,200 m on the Tibetan Plateau. Alpha diversity was examined on the basis of species richness and evenness, and beta diversity was quantified with the recently developed metric of local contributions to beta diversity (LCBD). Typical alpine steppe and meadow ecosystems were distributed below and above 4,850 m, respectively, which was consistent with the two main constraints of mean annual temperature (MAT) and mean annual precipitation (MAP). Species richness and evenness showed decreasing elevational patterns in archaea and nonsignificant or U-shaped patterns in bacteria. The LCBD of both groups exhibited significant U-shaped elevational patterns, with the lowest values occurring at 4,800 m. For the three diversity metrics, soil pH was the primary explanatory variable in archaea, explaining over 20.1% of the observed variation, whereas vegetation richness, total nitrogen and the K/Al ratio presented the strongest effects on bacteria, with relative importance values of 16.1%, 12.5% and 11.6%, respectively. For the microbial community composition of both archaea and bacteria, the moisture index showed the dominant effect, explaining 17.6% of the observed variation, followed by MAT and MAP. Taken together, temperature and precipitation exerted considerable indirect effects on microbial richness and evenness through local environmental and energy supply-related variables, such as vegetation richness, whereas temperature exerted a larger direct influence on LCBD and the community composition. Our findings highlighted the profound influence of temperature and precipitation interactions on microbial beta diversity in alpine grasslands on the Tibetan Plateau.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Lili Tang ◽  
Tanbao Li ◽  
Dengwu Li ◽  
Xiaxia Meng

The elevational distribution of plant diversity is a popular issue in ecology and biogeography, and several studies have examined the determinants behind plant diversity patterns. In this study, using published data of the local flora of Taibai Mountain, we explored the effects of spatial and climatic factors on plant species richness. We also evaluated Rapoport’s elevational rule by examining the relationship between elevational range size and midpoint. Species richness patterns were regressed against area, middle domain effect (MDE), mean annual temperature (MAT), and mean annual precipitation (MAP). The results showed that richness of overall plants, seed plants, bryophytes, and ferns all showed hump-shaped patterns along the elevational gradient, although the absolute elevation of richness peaks differed in different plant groups. Species richness of each plant group was all associated strongly with MAT and MAP. In addition to climatic factors, overall plants and seed plants were more related to area in linear regression models, while MDE was a powerful explanatory variable for bryophytes. Rapoport’s elevational rule on species richness was not supported. Our study suggests that a combined interaction of spatial and climatic factors influences the elevational patterns of plant species richness on Taibai Mountain, China.


2000 ◽  
Vol 16 (1) ◽  
pp. 69-82 ◽  
Author(s):  
Fabian A. Michelangeli

Tepuis are uplifted mountains surrounded by forest or savannas in the Guayana Shield in northern South America. Large areas of the summits of these mountains are characterized by bare rock with vegetation isolates (‘islands’) that vary in size from less than 1 m2 to over 100 m2. The species composition, species–area relationships and the factors involved in the formation of these vegetation islands were quantified on Roraima Tepui, Canaima National Park, Venezuela. A total of 40 species were present on the islands, 35 of which were angiosperms. Orchidaceae was the family with the highest diversity, but Bonnetiaceae, Poaceae and Rapateaceae achieved higher coverage. A positive correlation between island size and species richness was found. This relationship was not linear and the best fit model between island size and richness was exponential. Of the environmental variables studied, the highest correlation was found between the log of soil volume and species richness. Soil nutrient availability, and not water, might be the limiting factor determining the species composition and diversity of these communities.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 348 ◽  
Author(s):  
Simone Fattorini

The species-area relationship (SAR), the latitudinal gradient, the peninsula effect, and the elevational gradient are widespread biogeographical patterns. Using data from Italian reserves, these patterns were tested for tenebrionids and used as a framework to calculate expected extinction rates following area loss. Area was an important determinant of overall tenebrionid species richness, but not for xylophilous and endemic species. Thus, focusing on reserve areas is not the best approach for conserving insects with specialised ecology and restricted distribution. In general, species richness declined northwards, which contrasts with the peninsula effect, but conforms to the European latitudinal pattern observed in most taxa because of current and past biogeographical factors. Minimum elevation had an overall negative influence, as most tenebrionids are thermophilic. However, xylophilous tenebrionids, which are mainly associated with mesophilic forests, did not decline northwards, and were positively influenced by higher elevational ranges that allow more forms of vegetation. SAR-based extinction rates reflect species dispersal capabilities, being highest for geophilous species (which are mainly flightless), and lower for the xylophilous species. Extinction rates based on multiple models indicate that the use of area alone may overestimate extinction rates, when other factors exert an important role in determining species richness.


2020 ◽  
Vol 14 (4) ◽  
pp. 931-944 ◽  
Author(s):  
Ang Hu ◽  
Jianjun Wang ◽  
Hang Sun ◽  
Bin Niu ◽  
Guicai Si ◽  
...  

AbstractAlthough biodiversity and ecosystem functions are strongly shaped by contemporary environments, such as climate and local biotic and abiotic attributes, relatively little is known about how they depend on long-term geological processes. Here, along a 3000-m elevational gradient with tectonic faults on the Tibetan Plateau (that is, Galongla Mountain in Medog County, China), we study the joint effects of geological and contemporary environments on biological communities, such as the diversity and community composition of plants and soil bacteria, and ecosystem functions. We find that these biological communities and ecosystem functions generally show consistent elevational breakpoints at 2000–2800 m, which coincide with Indus-Yalu suture zone fault and are similar to the elevational breakpoints of soil bacteria on another mountain range 1000 km away. Mean annual temperature, soil pH and moisture are the primary contemporary determinants of biodiversity and ecosystem functions, which support previous findings. However, compared with the models excluding geological processes, inclusion of geological effects, such as parent rock and weathering, increases 67.9 and 35.9% of the explained variations in plant and bacterial communities, respectively. Such inclusion increases 27.6% of the explained variations in ecosystem functions. The geological processes thus provide additional links to ecosystem properties, which are prominent but show divergent effects on biodiversity and ecosystem functions: parent rock and weathering exert considerable direct effects on biodiversity, whereas indirectly influence ecosystem functions via interactions with biodiversity and contemporary environments. Thus, the integration of geological processes with environmental gradients could enhance our understanding of biodiversity and, ultimately, ecosystem functioning across different climatic zones.


Sign in / Sign up

Export Citation Format

Share Document