scholarly journals Spent Yeast from Brewing Processes: A Biodiverse Starting Material for Yeast Extract Production

Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 51 ◽  
Author(s):  
Friedrich Felix Jacob ◽  
Lisa Striegel ◽  
Michael Rychlik ◽  
Mathias Hutzler ◽  
Frank-Jürgen Methner

Spent yeast from beer manufacturing is a cost-effective and nutrient-rich starting material for the production of yeast extracts. In this study, it is shown how physiologically important ingredients in a yeast extract are influenced by the composition of the spent yeast from the brewing process. In pilot fermentations, the time of cropping (primary fermentation, lagering) of the spent yeast and the original gravity (12 ˚P, 16 ˚P, 20 ˚P) of the fermentation medium was varied, and four alternative non-Saccharomyces yeast strains were compared with two commercial Saccharomyces yeast strains. In addition, spent yeast was contaminated with the beer spoiler Lactobacillus brevis. The general nutrient composition (total protein, fat, ash) was investigated as well as the proteinogenic amino acid spectrum, the various folate vitamers (5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, H4folate, PteGlu) and the biological activity (reduction, antioxidative potential) of a mechanically (ultrasonic sonotrode) and an autolytically produced yeast extract. All the investigated ingredients from the yeast extract were influenced by the composition of the spent yeast from the brewing process. The biodiversity of the spent yeast from the brewing process therefore directly affects the content of physiologically valuable ingredients of a yeast extract and should be taken into consideration in industrial manufacturing processes.

2018 ◽  
Vol 101 (6) ◽  
pp. 1913-1919 ◽  
Author(s):  
Harish K Janagama ◽  
Tam Mai ◽  
Sukkhyun Han ◽  
Lourdes M Nadala ◽  
Cesar Nadala ◽  
...  

Abstract Background: Beer spoilage caused by wild yeast and bacteria is a major concern to both commercial and home brewers. Objective: To address this problem, Molecular Epidemiology Inc. (MEI, Seattle, WA) has developed a beer spoilage organism detection kit consisting of an enrichment media (BSE) and a multiplex PCR DNA dipstick that simultaneously detects these organisms within 2 h following enrichment. Methods: The kit was tested by using samples obtained from breweries located in the Greater Seattle area. Samples were spiked with the target microbes, when necessary, and used for assessing the performance characteristics of the DNA dipstick assay. Microbial enumerations were performed as per the standard microbiological plating methods. The suitability of the BSE medium to support the growth of beer spoilage microbes was compared with the industry-approved NBB-C medium (Dohler, Darmstadt, Germany). Results: Inclusivity (a panel of 50 isolates) and Exclusivity (a panel of 92 isolates) testing indicated that the dipstick assay can exclusively detect the indicated target beer spoilage microbes. When compared with the NBB-C medium (Dohler, Darmstadt, Germany) approved by the European Brewers Convention for beer spoilage organisms, the BSE medium supported faster growth of critical spoilage lactic acid bacteria such as Lactobacillus brevis, L. lindneri, and Pediococcus damnosus. Conclusions: The beer spoilage organism detection kit has a detection limit of 10 cells/mL. Highlights: The kit can be used at different stages of the brewing process, thus offering a convenient, cost effective, and faster test system for brewers interested in monitoring the quality of their product.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (11) ◽  
pp. 25-28
Author(s):  
K Narayanan ◽  
◽  
N.D. Chopade ◽  
V.M Subrahmanyam ◽  
J. Venkata Rao

Microbial chitinases are commercially exploited for their biocontrol properties and generation of useful products from chitinous waste. Availability of highly active chitinolytic enzymes is a major problem. The present study was carried out to improve chitinase production by Aspergillus terreus using a chemical mutagen, ethidium bromide. The organism was cultivated on lactose- yeast extract medium. The production medium consisting of chitin- yeast extract medium was seeded at 10% level. The wild strains were exposed to ethidium bromide in the concentration range 1.5- 6.0 µg/mL. Generally, all the mutated strains showed an improved chitinase yield compared to the control. Highest yield was observed with the strain exposed to 6 µg/mL of ethidium bromide. The yield was 25.03 % higher compared to the wild strain. The mutated strain was slimy in nature. Protein content of the mutated strain decreased by 11%. Ethidium bromide at a concentration of 1.5 µg/mL was considered optional, at which the strain was stable with increase of 21.80 % in enzyme activity and 4.41% increase in protein content. Increased enzyme yield with decreased non-specific protein could be useful in producing cost effective enzyme.


Fermentation ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 59 ◽  
Author(s):  
Tingting Liu ◽  
Shuangcheng Huang ◽  
Anli Geng

Cost-effective production of cellulosic ethanol requires robust microorganisms for rapid co-fermentation of glucose and xylose. This study aims to develop a recombinant diploid xylose-fermenting Saccharomyces cerevisiae strain for efficient conversion of lignocellulosic biomass sugars to ethanol. Episomal plasmids harboring codon-optimized Piromyces sp. E2 xylose isomerase (PirXylA) and Orpinomyces sp. ukk1 xylose (OrpXylA) genes were constructed and transformed into S. cerevisiae. The strain harboring plasmids with tandem PirXylA was favorable for xylose utilization when xylose was used as the sole carbon source, while the strain harboring plasmids with tandem OrpXylA was beneficial for glucose and xylose cofermentation. PirXylA and OrpXylA genes were also individually integrated into the genome of yeast strains in multiple copies. Such integration was beneficial for xylose alcoholic fermentation. The respiration-deficient strain carrying episomal or integrated OrpXylA genes exhibited the best performance for glucose and xylose co-fermentation. This was partly attributed to the high expression levels and activities of xylose isomerase. Mating a respiration-efficient strain carrying the integrated PirXylA gene with a respiration-deficient strain harboring integrated OrpXylA generated a diploid recombinant xylose-fermenting yeast strain STXQ with enhanced cell growth and xylose fermentation. Co-fermentation of 162 g L−1 glucose and 95 g L−1 xylose generated 120.6 g L−1 ethanol in 23 h, with sugar conversion higher than 99%, ethanol yield of 0.47 g g−1, and ethanol productivity of 5.26 g L−1·h−1.


2021 ◽  
Vol 9 (2) ◽  
pp. 24-30

Streptokinase is a fibrinolytic enzyme and a product of β-hemolytic Streptococci strains. This enzyme is used as a medication to break down clots in some cases of heart disease. Streptococcus equisimilis, a species of group C Streptococci, is widely used for the production of streptokinase by fermentation technology. In this study, the sugarcane bagasse fermentation medium was optimized for metal ions (KH2PO4, MgSO4.7H2O, CaCO3 and NaHCO3) at various levels to attain the maximal production of streptokinase. Sugarcane bagasse was used due to its profuse availability and as an ideal substrate for microbial processes for the manufacturing of value-added products. The results showed that maximal streptokinase production was found at 0.04% KH2PO4, 0.04% MgSO4.7H2O, 0.15% NaHCO3 and 0.04% CaCO3. Finally, the optimized medium resulted in 84.75 U/mg specific activity and 74.5% recovery. The purification process was carried out simultaneously using ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. Finally, a purified sample of streptokinase was run on SDS-PAGE and resolute 47 kDa molecular weight. The use of β-hemolytic Streptococci to obtain streptokinase is not free from health risks and is related to anaphylaxis. This study provides a way forward for the cost-effective ways to obtain streptokinase for the treatment of thrombosis.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1599
Author(s):  
Aneta Ciosek ◽  
Katarzyna Fulara ◽  
Olga Hrabia ◽  
Paweł Satora ◽  
Aleksander Poreda

The bioavailability of minerals, such as zinc and magnesium, has a significant impact on the fermentation process. These metal ions are known to influence the growth and metabolic activity of yeast, but there are few reports on their effects on lactic acid bacteria (LAB) metabolism during sour brewing. This study aimed to evaluate the influence of magnesium and zinc ions on the metabolism of Lactobacillus brevis WLP672 during the fermentation of brewers’ wort. We carried out lactic acid fermentations using wort with different mineral compositions: without supplementation; supplemented with magnesium at 60 mg/L and 120 mg/L; and supplemented with zinc at 0.4 mg/L and 2 mg/L. The concentration of organic acids, pH of the wort and carbohydrate use was determined during fermentation, while aroma compounds, real extract and ethanol were measured after the mixed fermentation. The addition of magnesium ions resulted in the pH of the fermenting wort decreasing more quickly, an increase in the level of L-lactic acid (after 48 h of fermentation) and increased concentrations of some volatile compounds. While zinc supplementation had a negative impact on the L. brevis strain, resulting in a decrease in the L-lactic acid content and a higher pH in the beer. We conclude that zinc supplementation is not recommended in sour beer production using L. brevis WLP672.


2020 ◽  
Vol 8 (3) ◽  
pp. 323 ◽  
Author(s):  
Lanlan Hu ◽  
Rui Liu ◽  
Xiaohong Wang ◽  
Xiuyan Zhang

Co-fermentation of selected non-Saccharomyces yeast strain with Saccharomyces cerevisiae is regarded as a promising approach to improve the sensory quality of fruit wine. To evaluate the effects of co-fermentations between the selected non-Saccharomyces yeast strains (Hanseniaspora opuntiae, Hanseniaspora uvarum and Torulaspora delbrueckii) and S. cerevisiae on the sensory quality of citrus wine, the fermentation processes, the chemical compositions, and the sensory evaluations of citrus wines were analyzed. Compared with those of S. cerevisiae fermentation, co-fermentations produced high sensory qualities, and S. cerevisiae/H. opuntiae co-fermentation had the best sensory quality followed by Sc-Hu and Sc-Td co-fermentations. Additionally, all the co-fermentations had a lower amount of ethanol and total acidity, higher pH value, and higher content of volatile aroma compounds, especially the content of higher alcohol and ester compounds, than those of S. cerevisiae fermentation. Therefore, co-fermentations of the non-Saccharomyces yeast strains and S. cerevisiae could be employed to improve the sensory quality of citrus wines. These results would provide not only methods to improve the sensory quality of citrus wine, but also a valuable reference for the selection of non-Saccharomyces yeast strains for fruit wine fermentation.


2019 ◽  
Vol 42 ◽  
pp. e42729
Author(s):  
Nicole Caldas Pan ◽  
Guilherme Biz ◽  
Cristiani Baldo ◽  
Maria Antonia Pedrine Colabone Celligoi

Hyaluronic acid (HA) has biological functions of interest to medical and cosmetic industries. The optimization of a fermentation medium contributes to improve the microbial production of the polymer on a large scale and make the product more accessible to the market. Factorial design and response surface were used to evaluate the concentration of sucrose, yeast extract, glutamine, glutamate and oxalic acid on the HA production by Streptococcus zooepidemicus in shake flasks. Biomass, lactate and acetate production were also studied. Yeast extract showed to be the main significant variable for all the studied responses, showing positive effect. For the HA production, glutamine was also significant and presented a positive effect. The best condition for the polymer production was 50 g L-1 of yeast extract and sucrose and 0.6 g L-1 of glutamine, glutamate and oxalic acid. In this condition, the fermentation was carried out in bioreactor with pH controlled at 8 and 0.5 vvm. HA production in bioreactor was explained by logistic regression model and the maximum concentration asymptotic of HA was 0.860 g L-1. An increase of 34% on polymer production was observed when compared to shake flask assay. Thus, it was possible to optimize the polymer production using statistical techniques.


2014 ◽  
Vol 181 ◽  
pp. 85-91 ◽  
Author(s):  
Manuel Quirós ◽  
Virginia Rojas ◽  
Ramon Gonzalez ◽  
Pilar Morales

2011 ◽  
Vol 138-139 ◽  
pp. 1209-1214
Author(s):  
Xiao Yu Liu ◽  
Fan Xing Meng ◽  
Yi Bo Zhang ◽  
Huan He ◽  
Wei Han ◽  
...  

Response surface methodology (RSM) was used for statistical optimization of fermentation medium that influenced the yield of endo-polysaccharide from cultivated mycelia of Cordyceps militaris. First, the Plackett-Burman design was used to evaluate the effects of ten variables including glucose, maltose, peptone, yeast extract, KH2PO4, MgSO4, CaCl2, VB1, inoculum density and medium capacity. Among these variables, glucose, peptone and yeast extract were identified to have the significant effects. Subsequently, response surface methodology based on a five-level three-factor central composite design was employed to determine the maximum dry weight (DW) of mycelial biomass at optimum concentration of glucose, peptone and yeast extract. The mycelia growth was found to correlate to the three parameters that could be represented by second-order polynomial models. The optimal values of the three parameters were determined as 4.62% glucose, 3.36% peptone and 0.43% yeast extract. The prediction DW was 23.727g/L. The actual experimental results were in agreement with the prediction.


Sign in / Sign up

Export Citation Format

Share Document