scholarly journals Improvement of Enantiomeric l-Lactic Acid Production from Mixed Hexose-Pentose Sugars by Coculture of Enterococcus mundtii WX1 and Lactobacillus rhamnosus SCJ9

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 95
Author(s):  
Augchararat Klongklaew ◽  
Kridsada Unban ◽  
Apinun Kanpiengjai ◽  
Pairote Wongputtisin ◽  
Punnita Pamueangmun ◽  
...  

Among 39 pentose-utilizing lactic acid bacteria (LAB) selected from acid-forming bacteria from the midgut of Eri silkworm, the isolate WX1 was selected with the highest capability to produce optically pure l-lactic acid (l-LA) from glucose, xylose and arabinose with furfural-tolerant properties. The isolate WX1 was identified as Enterococcus mundtii based on 16S rDNA sequence analysis. The conversion yields of l-LA from glucose and xylose by E. mundtii WX1 were 0.97 and 0.68 g/g substrate, respectively. Furthermore, l-LA production by E. mundtii WX1 in various glucose-xylose mixtures indicated glucose repression effect on xylose consumption. The coculture of E. mundtii WX1 and Lactobacillus rhamnosus SCJ9, a homofermentative LAB capable of producing l-LA from glucose clearly showed an improvement of l-LA production from 30 g/L total glucose-xylose (6:4). The results from Plackett–Burman design (PBD) indicated that Tween 80, MnSO4 and yeast extract (YE) were three medium components that significantly influenced (p < 0.05) l-LA production using the coculture strategy in the presence of 2 g/L furfural. Optimal concentrations of these variables revealed by central composite design (CCD) and response surface methodology (RSM) were 20.61 g/L YE, 1.44 g/L Tween 80 and 1.27 g/L MnSO4. Based on the optimized medium with 30 g/L total glucose-xylose (6:4), the maximum experimental l-LA value of 23.59 g/L reflecting 0.76 g/g substrate were achieved from 48 h fermentation at 37 °C. l-LA produced by coculture cultivated under standard MRS medium and new optimized conditions were 1.28 and 1.53 times higher than that obtained from single culture by E. mundtii WX1, respectively. This study provides the foundations for practical applications of coculture in bioconversion of lignocellulose particularly glucose-xylose-rich corn stover to l-LA.

2019 ◽  
Vol 5 (10) ◽  
pp. 22271-22285
Author(s):  
Marília Crivelari Cunha ◽  
Michelle Thiemi Masotti ◽  
Olga Lucía Mondragón-Bernal ◽  
José Guilherme Lembi Ferreira Alves

Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 32 ◽  
Author(s):  
Kridsada Unban ◽  
Apinun Kanpiengjai ◽  
Nuttapong Khatthongngam ◽  
Chalermpong Saenjum ◽  
Chartchai Khanongnuch

A direct bioconversion of gelatinized starchy waste (GSW) to lactic acid by amylolytic lactic acid bacterium Lactobacillus plantarum S21 was investigated. Corn steep liquor (CSL) was selected as the most suitable low-cost nitrogen source for replacing yeast extract, beef extract, and peptone in De Man, Rogosa and Sharpe (MRS) medium. Plackett–Burman design results indicated that GSW and CSL were the two most nutrients that significantly influence lactic acid production, among eight medium components, including GSW, CSL, K2HPO4, CH3COONa, (NH4)2HC6H5O7, MgSO4, MnSO4, and Tween 80. A new low-cost medium containing only GSW (134.4 g/L) and CSL (187.7 g/L) was achieved as omitting other six components from the optimized medium had no effect on lactic acid yield. Batch fermentation at 37 °C both in 1 L and 10 L jar fermenters showed non-significantly different productivity. A by-product, maltose-forming α-amylase, was successfully achieved up to 96% recovery yield using an ultrafiltration unit equipped with a 50 kDa cut-off membrane. Crude lactic acid exhibited the additional benefit of antimicrobial activity against food and feed pathogens Salmonella enterica serovar Typhimurium TISTR 292, Vibrio cholerae TH-001, and also E. coli ATCC 25922. This study presents a promising bioprocess for the simultaneous production of lactic acid, and a value-added food enzyme, using only two industrial wastes, GSW and CSL, as the medium components.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
WHINY HARDIYATI ERLIANA ◽  
Tri Widjaja ◽  
ALI ALTWAY ◽  
LILY PUDJIASTUTI

Abstract. Erliana WH, Widjaja T, Altway A, Pudjiastuti L. 2020. Synthesis of lactic acid from sugar palm trunk waste (Arenga pinnata): Hydrolysis and fermentation studies. Biodiversitas 21: 2281-2288. The increasing problems of global energy and the environment are the main reasons for developing products with new techniques through green methods. Sugar palm trunk waste (SPTW) has potential as agricultural waste because of its abundant availability, but it is not used optimally. This study was aimed to determine the effect of various microorganisms on increasing lactic acid production by controlling pH and temperature conditions in the fermentation process. SPTW contains 43.88% cellulose, 7.24% hemicellulose, and 33.24% lignin. The lignin content in SPTW can inhibit reducing sugar formation; the pretreatment process should remove this content. In the study, the pretreatment process was conducted using acid-organosolv. In the acid pretreatment, 0.2 M H2SO4 was added at 120oC for 40 minutes; organosolv pretreatment using 30% ethanol (v/v) at 107oC for 33 minutes was able to increase cellulose content by 56.33% and decrease lignin content by 27.09%. The pretreatment was followed by an enzymatic hydrolysis process with a combination of commercial cellulase enzymes from Aspergillus niger (AN) and Trichoderma reesei (TR), with variations of 0:1, 1:0, 1:1, 1:2 and 2:1. The best reducing sugar concentration was obtained with an AN: TR ratio of 1:2 to form reducing sugar from cellulose. Subsequently, lactic acid fermentation was carried out using lactic acid bacteria at 37oC and pH 6 incubated for 48 hours. The highest lactic acid concentration (33.292 g/L) was obtained using a mixed culture of Lactobacillus rhamnosus and Lactobacillus brevis to convert reducing sugar become lactic acid.


RSC Advances ◽  
2016 ◽  
Vol 6 (21) ◽  
pp. 17659-17668 ◽  
Author(s):  
Mohamed Ali Abdel-Rahman ◽  
Yukihiro Tashiro ◽  
Takeshi Zendo ◽  
Kenji Sakai ◽  
Kenji Sonomoto

We report an effective cell recycling continuous fermentation of xylose to l-lactic acid with high concentration, productivity, and yield using strain QU 25. pH was found to affect the yield and corn steep liquor as feeding medium enhanced the yield.


2020 ◽  
Author(s):  
Ying Wang ◽  
Ka-Lai Chan ◽  
Mohamed Ali Abdel-Rahman ◽  
Kenji Sonomoto ◽  
Shao-Yuan Leu

Abstract Background: Simultaneous and effective conversion of both pentose and hexoses in fermentation is a critical and challenging task toward the lignocellulosic economy. This study aims to investigate the feasibility of an innovative co-fermentation process featured with cell recycle unit (CF/CR) for mixed sugar utilization. A l-lactic acid producing strain Enterococcus mundtii QU 25 was applied in the continuous fermentation process to utilize the mixed sugar at different productivities over the changes of flowing conditions. Structured numerical platform were constructed with the experiments to optimize the biological process and clarify the cell metabolisms through kinetics analysis. The structured model, kinetic parameters, and achievement of the fermentation strategy shall provide new insights towards whole sugar fermentation via real-time monitoring for process control and optimization.Results: Significant carbon catabolite repression of co-fermentation using glucose/xylose mixture was overcome by replacing glucose with cellobiose, of which the consumption ratio of hexose to pentose was improved dramatically from 10.4:1 to 2.17:1. An outstanding product concentration of 65.15 g·L -1 and productivity of 13.03 g·L -1 ·h -1 were achieved with 50 g·L -1 cellobiose and 30 g·L -1 xylose, at an optimized dilution rate of 0.2 h -1 with gradually increased cell retention time. Among the total lactic acid production, xylose contributed to more than 34% of the mixed sugars, which was close to the related contents in agricultural residuals. The model successfully simulated the transition of sugar consumption, cell growth, and lactic acid production among the batch, continuous process, and CF/CR system.Conclusion: Cell retention time played a critical role in balancing pentose and hexose consumption, cell decay, and lactic acid production in the CF/CR process. With the increase of cell concentration, consumption of mixed sugars increased with the productivity of final products, hence the impacts of substrate inhibiting reduced. With the validated parameters, the model showed highest accuracy simulating the CF/CR process, of which significantly longer cell retention times over hydraulic retention time were tested.


Author(s):  
Luciana Fontes Coelho ◽  
Cristian J Bolner de Lima ◽  
Marcela Piassi Bernardo ◽  
Georgina Michelena Alvarez ◽  
Jonas Contiero

2016 ◽  
Vol 59 ◽  
pp. 262-266 ◽  
Author(s):  
Aleksandra P. Djukić-Vuković ◽  
Bojan M. Jokić ◽  
Sunčica D. Kocić-Tanackov ◽  
Jelena D. Pejin ◽  
Ljiljana V. Mojović

Sign in / Sign up

Export Citation Format

Share Document