scholarly journals An Optimal Energy-Saving Strategy for Home Energy Management Systems with Bounded Customer Rationality

2019 ◽  
Vol 11 (4) ◽  
pp. 88 ◽  
Author(s):  
Guoying Lin ◽  
Yuyao Yang ◽  
Feng Pan ◽  
Sijian Zhang ◽  
Fen Wang ◽  
...  

With the development of techniques, such as the Internet of Things (IoT) and edge computing, home energy management systems (HEMS) have been widely implemented to improve the electric energy efficiency of customers. In order to automatically optimize electric appliances’ operation schedules, this paper considers how to quantitatively evaluate a customer’s comfort satisfaction in energy-saving programs, and how to formulate the optimal energy-saving model based on this satisfaction evaluation. First, the paper categorizes the utility functions of current electric appliances into two types; time-sensitive utilities and temperature-sensitive utilities, which cover nearly all kinds of electric appliances in HEMS. Furthermore, considering the bounded rationality of customers, a novel concept called the energy-saving cost is defined by incorporating prospect theory in behavioral economics into general utility functions. The proposed energy-saving cost depicts the comfort loss risk for customers when their HEMS schedules the operation status of appliances, which is able to be set by residents as a coefficient in the automatic energy-saving program. An optimization model is formulated based on minimizing energy consumption. Because the energy-saving cost has already been evaluated in the context of the satisfaction of customers, the formulation of the optimization program is very simple and has high computational efficiency. The case study included in this paper is first performed on a general simulation system. Then, a case study is set up based on real field tests from a pilot project in Guangdong province, China, in which air-conditioners, lighting, and some other popular electric appliances were included. The total energy-saving rate reached 65.5% after the proposed energy-saving program was deployed in our project. The benchmark test shows our optimal strategy is able to considerably save electrical energy for residents while ensuring customers’ comfort satisfaction is maintained.

Author(s):  
Ad Straub ◽  
Ellard Volmer

In contrast to physical sustainable measures carried out in homes, such as insulation, the installation of a Home Energy Management System (HEMS) has no direct and immediate energy-saving effect. A HEMS gives insight into resident behaviour regarding energy use. When this is linked to the appropriate feedback, the resident is in a position to change his or her behaviour. This should result in reduced gas and/or electricity consumption. The aim of our study is to contribute towards the effective use of home energy management systems (HEMS) by identifying types of homeowners in relation to the use of HEMS. The research methods used were a literature review and the Q-method. A survey using the Q-method was conducted among 39 owners of single-family homes in various Rotterdam neighbourhoods. In order to find shared views among respondents, a principal component analysis (PCA) was performed. Five different types of homeowner could be distinguished: the optimists, the privacy-conscious, the technicians, the sceptics, and the indifferent. Their opinions vary as regards the added value of a HEMS, what characteristics a HEMS should have, how much confidence they have in the energy-saving effect of such systems, and their views on the privacy and safety of HEMS. The target group classification can be used as input for a way in which local stakeholders, e.g. a municipality, can offer HEMS that is in line with the wishes of the homeowner.


2020 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Christian Pfeiffer ◽  
Markus Puchegger ◽  
Claudia Maier ◽  
Ina V. Tomaschitz ◽  
Thomas P. Kremsner ◽  
...  

Due to the increase of volatile renewable energy resources, additional flexibility will be necessary in the electricity system in the future to ensure a technically and economically efficient network operation. Although home energy management systems hold potential for a supply of flexibility to the grid, private end users often neglect or even ignore recommendations regarding beneficial behavior. In this work, the social acceptance and requirements of a participatively developed home energy management system with focus on (i) system support optimization, (ii) self-consumption and self-sufficiency optimization, and (iii) additional comfort functions are determined. Subsequently, the socially-accepted flexibility potential of the home energy management system is estimated. Using methods of online household survey, cluster analysis, and energy-economic optimization, the socially-accepted techno-economic potential of households in a three-community cluster sample area is computed. Results show about a third of the participants accept the developed system. This yields a shiftable load of nearly 1.8 MW within the small sample area. Furthermore, the system yields the considerably larger monetary surplus on the supplier-side due to its focus on system support optimization. New electricity market opportunities are necessary to adequately reward a systemically useful load behavior of households.


2020 ◽  
Author(s):  
Lawryn Edmonds ◽  
Bo Liu ◽  
Hongyu Wu ◽  
Hang Zhang ◽  
Don Gruenbacher ◽  
...  

As home energy management systems (HEMSs) are implemented in homes as ways of reducing customer costs and providing demand response (DR) to the electric utility, homeowner’s privacy can be compromised. As part of the HEMS framework, homeowners are required to send load forecasts to the distribution system operator (DSO) for power balancing purposes. Submitting forecasts allows a platform for attackers to gain knowledge on user patterns based on the load information provided. The attacker could, for example, enter the home to steal valuable possessions when the homeowner is away. In this paper, we propose a framework using a smart contract within a private blockchain to keep customer information private when communicating with the DSO. The results show the HEMS users’ privacy is maintained, while the benefits of data sharing are obtained. Blockchain and its associated smart contracts may be a viable solution to security concerns in DR applications where load forecasts are sent to a DSO.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1647 ◽  
Author(s):  
Luis Gomes ◽  
Filipe Sousa ◽  
Tiago Pinto ◽  
Zita Vale

Smart home devices currently available on the market can be used for remote monitoring and control. Energy management systems can take advantage of this and deploy solutions that can be implemented in our homes. One of the big enablers is smart plugs that allow the control of electrical resources while providing a retrofitting solution, hence avoiding the need for replacing the electrical devices. However, current so-called smart plugs lack the ability to understand the environment they are in, or the electrical appliance/resource they are controlling. This paper applies environment awareness smart plugs (EnAPlugs) able to provide enough data for energy management systems or act on its own, via a multi-agent approach. A case study is presented, which shows the application of the proposed approach in a house where 17 EnAPlugs are deployed. Results show the ability to shared knowledge and perform individual resource optimizations. This paper evidences that by integrating artificial intelligence on devices, energy advantages can be observed and used in favor of users, providing comfort and savings.


2017 ◽  
Vol 96 (4) ◽  
pp. 112-120
Author(s):  
Atsuhiro KAWAMURA ◽  
Hiroki HAYASHI ◽  
Taro MORI ◽  
Hidekazu KAJIWARA ◽  
Kazunori CHIDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document