scholarly journals A Novel Task Caching and Migration Strategy in Multi-Access Edge Computing Based on the Genetic Algorithm

2019 ◽  
Vol 11 (8) ◽  
pp. 181 ◽  
Author(s):  
Lujie Tang ◽  
Bing Tang ◽  
Linyao Kang ◽  
Li Zhang

Multi-access edge computing (MEC) brings high-bandwidth and low-latency access to applications distributed at the edge of the network. Data transmission and exchange become faster, and the overhead of the task migration between mobile devices and edge cloud becomes smaller. In this paper, we adopt the fine-grained task migration model. At the same time, in order to further reduce the delay and energy consumption of task execution, the concept of the task cache is proposed, which involves caching the completed tasks and related data on the edge cloud. Then, we consider the limitations of the edge cloud cache capacity to study the task caching strategy and fine-grained task migration strategy on the edge cloud using the genetic algorithm (GA). Thus, we obtained the optimal mobile device task migration strategy, satisfying minimum energy consumption and the optimal cache on the edge cloud. The simulation results showed that the task caching strategy based on fine-grained migration can greatly reduce the energy consumption of mobile devices in the MEC environment.

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 190
Author(s):  
Wu Ouyang ◽  
Zhigang Chen ◽  
Jia Wu ◽  
Genghua Yu ◽  
Heng Zhang

As transportation becomes more convenient and efficient, users move faster and faster. When a user leaves the service range of the original edge server, the original edge server needs to migrate the tasks offloaded by the user to other edge servers. An effective task migration strategy needs to fully consider the location of users, the load status of edge servers, and energy consumption, which make designing an effective task migration strategy a challenge. In this paper, we innovatively proposed a mobile edge computing (MEC) system architecture consisting of multiple smart mobile devices (SMDs), multiple unmanned aerial vehicle (UAV), and a base station (BS). Moreover, we establish the model of the Markov decision process with unknown rewards (MDPUR) based on the traditional Markov decision process (MDP), which comprehensively considers the three aspects of the migration distance, the residual energy status of the UAVs, and the load status of the UAVs. Based on the MDPUR model, we propose a advantage-based value iteration (ABVI) algorithm to obtain the effective task migration strategy, which can help the UAV group to achieve load balancing and reduce the total energy consumption of the UAV group under the premise of ensuring user service quality. Finally, the results of simulation experiments show that the ABVI algorithm is effective. In particular, the ABVI algorithm has better performance than the traditional value iterative algorithm. And in a dynamic environment, the ABVI algorithm is also very robust.


2022 ◽  
Author(s):  
Bin Xu ◽  
Tao Deng ◽  
Yichuan Liu ◽  
Yunkai Zhao ◽  
Zipeng Xu ◽  
...  

Abstract The combination of idle computing resources in mobile devices and the computing capacity of mobile edge servers enables all available devices in an edge network to complete all computing tasks in coordination to effectively improve the computing capacity of the edge network. This is a research hotspot for 5G technology applications. Previous research has focused on the minimum energy consumption and/or delay to determine the formulation of the computational offloading strategy but neglected the cost required for the computation of collaborative devices (mobile devices, mobile edge servers, etc.); therefore, we proposed a cost-based collaborative computation offloading model. In this model, when a task requests these devices' assistance in computing, it needs to pay the corresponding calculation cost; and on this basis, the task is offloaded and computed. In addition, for the model, we propose an adaptive neighborhood search based on simulated annealing algorithm (ANSSA) to jointly optimize the offloading decision and resource allocation with the goal of minimizing the sum of both the energy consumption and calculation cost. The adaptive mechanism enables different operators to update the probability of selection according to historical experience and environmental perception, which makes the individual evolution have certain autonomy. A large number of experiments conducted on different scales of mobile user instances show that the ANSSA can obtain satisfactory time performance with guaranteed solution quality. The experimental results demonstrate the superiority of the mobile edge computing (MEC) offloading system. It is of great significance to strike a balance between maintaining the life cycle of smart mobile devices and breaking the performance bottleneck of MEC servers.


Author(s):  
Zhuofan Liao ◽  
Jingsheng Peng ◽  
Bing Xiong ◽  
Jiawei Huang

AbstractWith the combination of Mobile Edge Computing (MEC) and the next generation cellular networks, computation requests from end devices can be offloaded promptly and accurately by edge servers equipped on Base Stations (BSs). However, due to the densified heterogeneous deployment of BSs, the end device may be covered by more than one BS, which brings new challenges for offloading decision, that is whether and where to offload computing tasks for low latency and energy cost. This paper formulates a multi-user-to-multi-servers (MUMS) edge computing problem in ultra-dense cellular networks. The MUMS problem is divided and conquered by two phases, which are server selection and offloading decision. For the server selection phases, mobile users are grouped to one BS considering both physical distance and workload. After the grouping, the original problem is divided into parallel multi-user-to-one-server offloading decision subproblems. To get fast and near-optimal solutions for these subproblems, a distributed offloading strategy based on a binary-coded genetic algorithm is designed to get an adaptive offloading decision. Convergence analysis of the genetic algorithm is given and extensive simulations show that the proposed strategy significantly reduces the average latency and energy consumption of mobile devices. Compared with the state-of-the-art offloading researches, our strategy reduces the average delay by 56% and total energy consumption by 14% in the ultra-dense cellular networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Dali Zhu ◽  
Ting Li ◽  
Haitao Liu ◽  
Jiyan Sun ◽  
Liru Geng ◽  
...  

Mobile edge computing (MEC) has been envisaged as one of the most promising technologies in the fifth generation (5G) mobile networks. It allows mobile devices to offload their computation-demanding and latency-critical tasks to the resource-rich MEC servers. Accordingly, MEC can significantly improve the latency performance and reduce energy consumption for mobile devices. Nonetheless, privacy leakage may occur during the task offloading process. Most existing works ignored these issues or just investigated the system-level solution for MEC. Privacy-aware and user-level task offloading optimization problems receive much less attention. In order to tackle these challenges, a privacy-preserving and device-managed task offloading scheme is proposed in this paper for MEC. This scheme can achieve near-optimal latency and energy performance while protecting the location privacy and usage pattern privacy of users. Firstly, we formulate the joint optimization problem of task offloading and privacy preservation as a semiparametric contextual multi-armed bandit (MAB) problem, which has a relaxed reward model. Then, we propose a privacy-aware online task offloading (PAOTO) algorithm based on the transformed Thompson sampling (TS) architecture, through which we can (1) receive the best possible delay and energy consumption performance, (2) achieve the goal of preserving privacy, and (3) obtain an online device-managed task offloading policy without requiring any system-level information. Simulation results demonstrate that the proposed scheme outperforms the existing methods in terms of minimizing the system cost and preserving the privacy of users.


Algorithms ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 48 ◽  
Author(s):  
Ming Zhao ◽  
Ke Zhou

Mobile Edge Computing (MEC) is an innovative technique, which can provide cloud-computing near mobile devices on the edge of networks. Based on the MEC architecture, this paper proposes an ARIMA-BP-based Selective Offloading (ABSO) strategy, which minimizes the energy consumption of mobile devices while meeting the delay requirements. In ABSO, we exploit an ARIMA-BP model for estimating computation capacity of the edge cloud, and then design a Selective Offloading Algorithm for obtaining offloading strategy. Simulation results reveal that the ABSO can apparently decrease the energy consumption of mobile devices in comparison with other offloading methods.


2021 ◽  
Author(s):  
Sheng‐Zhi Huang ◽  
Kun‐Yu Lin ◽  
Chin‐Lin Hu

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Runfu Liang ◽  
Gaocai Wang ◽  
Jintian Hu

As computing-intensive mobile applications become increasingly diversified, mobile devices’ computing power is hard to keep up with demand. Mobile devices migrate tasks to the Mobile Edge Computing (MEC) platform and improve the performance of task processing through reasonable allocation and caching of resources on the platform. Small cellular networks (SCN) have excellent short-distance communication capabilities, and the combination of MEC and SCN is a promising research direction. This paper focuses on minimizing energy consumption for task migration in small cellular networks and proposes a task migration energy optimization strategy with resource caching by combining optimal stopping theory with migration decision-making. Firstly, the process of device finding the MEC platform with the required task processing resources is formulated as the optimal stopping problem. Secondly, we prove an optimal stopping rule’s existence, obtain the optimal processing energy consumption threshold, and compare it with the device energy consumption. Finally, the platform with the best energy consumption is selected to process the task. In the simulation experiment, the optimization strategy has lower average migration energy consumption and higher average data execution energy efficiency and average distance execution energy efficiency, which improves task migration performance by 10% ∼ 60%.


Sign in / Sign up

Export Citation Format

Share Document