scholarly journals Past and Current Trends of Coastal Predatory Fish in the Baltic Sea with a Focus on Perch, Pike, and Pikeperch

Fishes ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 7 ◽  
Author(s):  
Jens Olsson

Coastal predatory fish are of key importance for the provisioning of ecosystem services in the Baltic Sea. Worldwide, however, there has been a general and sharp decline in predatory fish populations, in turn threatening the viability and function of marine ecosystems. On the basis of the literature, the past (data until the 2000s) and current (data until early and mid 2010s) trends in abundance of coastal predatory fish in the Baltic Sea are reviewed in this paper. Potentially important impacting factors behind the temporal development of the populations and measures to strengthen and restore them are also discussed. Available data from coastal fish monitoring programs suggest a stable or increasing abundance of coastal predatory fish as a functional group and for the species perch in the majority of areas assessed in the Baltic Sea. For pike and pikeperch, data to support assessments is scarce, but suggest substantial declines in the abundance of both species in most assessed areas. The impacting factors behind these patterns vary between species and areas, but include climate, habitat exploitation, fishing, and species-interactions in the coastal food web. Measures to restore and support coastal predatory fish communities should follow an ecosystem-based approach to management and include efforts to regulate fisheries sectors in combination with habitat protection and restoration.

2021 ◽  
Vol 13 (7) ◽  
pp. 3872
Author(s):  
Julia Tanzer ◽  
Ralf Hermann ◽  
Ludwig Hermann

The Baltic Sea is considered the marine water body most severely affected by eutrophication within Europe. Due to its limited water exchange nutrients have a particularly long residence time in the sea. While several studies have analysed the costs of reducing current nutrient emissions, the costs for remediating legacy nutrient loads of past emissions remain unknown. Although the Baltic Sea is a comparatively well-monitored region, current data and knowledge is insufficient to provide a sound quantification of legacy nutrient loads and much less their abatement costs. A first rough estimation of agricultural legacy nutrient loads yields an accumulation of 0.5–4.0 Mt N and 0.3–1.2 Mt P in the Baltic Sea and 0.4–0.5 Mt P in agricultural soils within the catchment. The costs for removing or immobilising this amount of nutrients via deep water oxygenation, mussel farming and soil gypsum amendment are in the range of few tens to over 100 billion €. These preliminary results are meant as a basis for future studies and show that while requiring serious commitment to funding and implementation, remediating agricultural legacy loads is not infeasible and may even provide economic benefits to local communities in the long run.


2003 ◽  
Vol 60 (5) ◽  
pp. 939-950 ◽  
Author(s):  
Chris J Harvey ◽  
Sean P Cox ◽  
Timothy E Essington ◽  
Sture Hansson ◽  
James F Kitchell

Abstract Because fisheries operate within a complex array of species interactions, scientists increasingly recommend multispecies approaches to fisheries management. We created a food web model for the Baltic Sea proper, using the Ecopath with Ecosim software, to evaluate interactions between fisheries and the food web from 1974 to 2000. The model was based largely on values generated by multispecies virtual population analysis (MSVPA). Ecosim outputs closely reproduced MSVPA biomass estimates and catch data for sprat (Sprattus sprattus), herring (Clupea harengus), and cod (Gadus morhua), but only after making adjustments to cod recruitment, to vulnerability to predation of specific species, and to foraging times. Among the necessary adjustments were divergent trophic relationships between cod and clupeids: cod exhibited top-down control on sprat biomass, but had little influence on herring. Fishing, the chief source of mortality for cod and herring, and cod reproduction, as driven by oceanographic conditions as well as unexplained variability, were also key structuring forces. The model generated many hypotheses about relationships between key biota in the Baltic Sea food web and may ultimately provide a basis for estimating community responses to management actions.


2015 ◽  
Vol 163 ◽  
pp. 134-142 ◽  
Author(s):  
Ulf Bergström ◽  
Jens Olsson ◽  
Michele Casini ◽  
Britas Klemens Eriksson ◽  
Ronny Fredriksson ◽  
...  

2019 ◽  
Author(s):  
María Teresa Camarena-Gómez ◽  
Clara Ruiz-González ◽  
Jonna Piiparinen ◽  
Tobias Lipsewers ◽  
Cristina Sobrino ◽  
...  

AbstractIn the Baltic Sea, climate change has caused shifts in the phytoplankton spring bloom communities with co-occurrence of diatoms and dinoflagellates. Such changes likely affect the composition and function of associated bacterioplankton, key members of the carbon cycling, although the actual effects are unknown. To understand how changes in phytoplankton impact on bacterioplankton composition and function, we analysed bacterioplankton communities and their production during different phases of the spring bloom in four consecutive years across the Baltic Sea, and related them to environmental variables. Phytoplankton communities varied largely in composition, modifying the taxonomic structure and richness of the associated bacterioplankton assemblages. In presence of certain diatoms (Achnanthes taeniata, Skeletonema costatum and Chaetoceros spp.), bacterial production and diversity were high and with more relative abundance of Flavobacteriia, Gammaproteobacteria and Betaproteobacteria. This bacterial community structure correlated positively with high diatom biomass and with high bacterial production rates. In contrast, during dinoflagellate-dominated blooms or when the diatom Thalassiosira baltica was abundant, both bacterial production rates and diversity were low, with bacterial communities dominated by SAR11 and Rhodobacteraceae. Our results demonstrate that, changes in the phytoplankton spring bloom will have profound consequences on bacterial community structure and their role in carbon cycling.


AMBIO ◽  
2007 ◽  
Vol 36 (2) ◽  
pp. 180-185 ◽  
Author(s):  
Kaarina Sivonen ◽  
Katrianna Halinen ◽  
Leila M. Sihvonen ◽  
Kerttu Koskenniemi ◽  
Hanna Sinkko ◽  
...  

2010 ◽  
Vol 67 (8) ◽  
pp. 1587-1595 ◽  
Author(s):  
Lars Ljunggren ◽  
Alfred Sandström ◽  
Ulf Bergström ◽  
Johanna Mattila ◽  
Antti Lappalainen ◽  
...  

Abstract Ljunggren, L., Sandström, A., Bergström, U., Mattila, J., Lappalainen, A., Johansson, G., Sundblad, G., Casini, M., Kaljuste, O., and Eriksson, B. K. 2010. Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. – ICES Journal of Marine Science, 67: 1587–1595. The dominant coastal predatory fish in the southwestern Baltic Sea, perch and pike, have decreased markedly in abundance during the past decade. An investigation into their recruitment at 135 coastal sites showed that both species suffered from recruitment failures, mainly in open coastal areas. A detailed study of 15 sites showed that areas with recruitment problems were also notable for mortality of early-stage larvae at the onset of exogenous food-intake. At those sites, zooplankton abundance predicted 83 and 34% of the variation in young of the year perch and pike, respectively, suggesting that the declines were caused by recruitment failure attributable to zooplankton food limitation. Incidences of recruitment failure match in time an offshore trophic cascade that generated massive increases in planktivorous sprat and decreases in zooplankton biomass in the early 1990s. Therefore, sprat biomass explained 53% of the variation in perch recruitment from 1994 to 2007 at an open coastal site, where three-spined stickleback also increased exponentially after 2002. The results indicate that the dramatic change in the offshore ecosystem may have propagated to the coast causing declines of the dominating coastal predators perch and pike followed by an increase in the abundance of small-bodied fish.


2017 ◽  
Vol 114 (25) ◽  
pp. 6539-6544 ◽  
Author(s):  
Seong Do Yun ◽  
Barbara Hutniczak ◽  
Joshua K. Abbott ◽  
Eli P. Fenichel

We merge inclusive wealth theory with ecosystem-based management (EBM) to address two challenges in the science of sustainable management of ecosystems. First, we generalize natural capital theory to approximate realized shadow prices for multiple interacting natural capital stocks (species) making up an ecosystem. These prices enable ecosystem components to be better included in wealth-based sustainability measures. We show that ecosystems are best envisioned as portfolios of assets, where the portfolio’s performance depends on the performance of the underlying assets influenced by their interactions. Second, changes in ecosystem wealth provide an attractive headline index for EBM, regardless of whether ecosystem wealth is ultimately included in a broader wealth index. We apply our approach to the Baltic Sea ecosystem, focusing on the interacting community of three commercially important fish species: cod, herring, and sprat. Our results incorporate supporting services embodied in the shadow price of a species through its trophic interactions. Prey fish have greater shadow prices than expected based on market value, and predatory fish have lower shadow prices than expected based on market value. These results are because correctly measured shadow prices reflect interdependence and limits to substitution. We project that ecosystem wealth in the Baltic Sea fishery ecosystem generally increases conditional on the EBM-inspired multispecies maximum sustainable yield management beginning in 2017, whereas continuing the current single-species management generally results in declining wealth.


2021 ◽  
Vol 8 ◽  
Author(s):  
Thorsten Blenckner ◽  
Yosr Ammar ◽  
Bärbel Müller-Karulis ◽  
Susa Niiranen ◽  
Lars Arneborg ◽  
...  

Future climate biogeochemical projections indicate large changes in the ocean with environmental conditions not experienced at present referred to as novel, or may even disappear. These climate-induced changes will most likely affect species distribution via changes in growth, behavior, evolution, dispersal, and species interactions. However, the future risk of novel and disappearing environmental conditions in the ocean is poorly understood, in particular for compound effects of climate and nutrient management changes. We map the compound risk of the occurrence of future novel and disappearing environmental conditions, analyze the outcome of climate and nutrient management scenarios for the world’s largest estuary, the Baltic Sea, and the potential consequences for three charismatic species. Overall, the future projections show, as expected, an increase in environmental novelty over time. The future nutrient reduction management that improves the eutrophication status of the Baltic Sea contributes to large novel and disappearing conditions. We show the consequences of novel and disappearing environmental conditions for fundamental niches of three charismatic species under different scenarios. This first step toward comprehensively analyzing environmental novelty and disappearing conditions for a marine system illustrates the urgent need to include novelty and disappearing projection outputs in Earth System Models. Our results further illustrate that adaptive management is needed to account for the emergence of novelty related to the interplay of multiple drivers. Overall, our analysis provides strong support for the expectation of novel ecological communities in marine systems, which may affect ecosystem services, and needs to be accounted for in sustainable future management plans of our oceans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Séréna Albert ◽  
Per Hedberg ◽  
Nisha H. Motwani ◽  
Sara Sjöling ◽  
Monika Winder ◽  
...  

AbstractIn coastal aphotic sediments, organic matter (OM) input from phytoplankton is the primary food resource for benthic organisms. Current observations from temperate ecosystems like the Baltic Sea report a decline in spring bloom diatoms, while summer cyanobacteria blooms are becoming more frequent and intense. These climate-driven changes in phytoplankton communities may in turn have important consequences for benthic biodiversity and ecosystem functions, but such questions are not yet sufficiently explored experimentally. Here, in a 4-week experiment, we investigated the response of microeukaryotic and bacterial communities to different types of OM inputs comprising five ratios of two common phytoplankton species in the Baltic Sea, the diatom Skeletonema marinoi and filamentous cyanobacterium Nodularia spumigena. Metabarcoding analyses on 16S and 18S ribosomal RNA (rRNA) at the experiment termination revealed subtle but significant changes in diversity and community composition of microeukaryotes in response to settling OM quality. Sediment bacteria were less affected, although we observed a clear effect on denitrification gene expression (nirS and nosZ), which was positively correlated with increasing proportions of cyanobacteria. Altogether, these results suggest that future changes in OM input to the seafloor may have important effects on both the composition and function of microbenthic communities.


Sign in / Sign up

Export Citation Format

Share Document