scholarly journals The Risk for Novel and Disappearing Environmental Conditions in the Baltic Sea

2021 ◽  
Vol 8 ◽  
Author(s):  
Thorsten Blenckner ◽  
Yosr Ammar ◽  
Bärbel Müller-Karulis ◽  
Susa Niiranen ◽  
Lars Arneborg ◽  
...  

Future climate biogeochemical projections indicate large changes in the ocean with environmental conditions not experienced at present referred to as novel, or may even disappear. These climate-induced changes will most likely affect species distribution via changes in growth, behavior, evolution, dispersal, and species interactions. However, the future risk of novel and disappearing environmental conditions in the ocean is poorly understood, in particular for compound effects of climate and nutrient management changes. We map the compound risk of the occurrence of future novel and disappearing environmental conditions, analyze the outcome of climate and nutrient management scenarios for the world’s largest estuary, the Baltic Sea, and the potential consequences for three charismatic species. Overall, the future projections show, as expected, an increase in environmental novelty over time. The future nutrient reduction management that improves the eutrophication status of the Baltic Sea contributes to large novel and disappearing conditions. We show the consequences of novel and disappearing environmental conditions for fundamental niches of three charismatic species under different scenarios. This first step toward comprehensively analyzing environmental novelty and disappearing conditions for a marine system illustrates the urgent need to include novelty and disappearing projection outputs in Earth System Models. Our results further illustrate that adaptive management is needed to account for the emergence of novelty related to the interplay of multiple drivers. Overall, our analysis provides strong support for the expectation of novel ecological communities in marine systems, which may affect ecosystem services, and needs to be accounted for in sustainable future management plans of our oceans.

2018 ◽  
Vol 75 (7) ◽  
pp. 2463-2475 ◽  
Author(s):  
Romain Frelat ◽  
Alessandro Orio ◽  
Michele Casini ◽  
Andreas Lehmann ◽  
Bastien Mérigot ◽  
...  

Abstract Fisheries and marine ecosystem-based management requires a holistic understanding of the dynamics of fish communities and their responses to changes in environmental conditions. Environmental conditions can simultaneously shape the spatial distribution and the temporal dynamics of a population, which together can trigger changes in the functional structure of communities. Here, we developed a comprehensive framework based on complementary multivariate statistical methodologies to simultaneously investigate the effects of environmental conditions on the spatial, temporal and functional dynamics of species assemblages. The framework is tested using survey data collected during more than 4000 fisheries hauls over the Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be structured into three sub-assemblages along a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, we highlight a mismatch between species and functional richness associated with a lower functional redundancy in the Baltic Proper compared with other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a large dataset of community data analysed in an innovative and comprehensive way, we could disentangle the effects of environmental changes on the structure of biotic communities—key information for the management and conservation of ecosystems.


2003 ◽  
Vol 60 (5) ◽  
pp. 939-950 ◽  
Author(s):  
Chris J Harvey ◽  
Sean P Cox ◽  
Timothy E Essington ◽  
Sture Hansson ◽  
James F Kitchell

Abstract Because fisheries operate within a complex array of species interactions, scientists increasingly recommend multispecies approaches to fisheries management. We created a food web model for the Baltic Sea proper, using the Ecopath with Ecosim software, to evaluate interactions between fisheries and the food web from 1974 to 2000. The model was based largely on values generated by multispecies virtual population analysis (MSVPA). Ecosim outputs closely reproduced MSVPA biomass estimates and catch data for sprat (Sprattus sprattus), herring (Clupea harengus), and cod (Gadus morhua), but only after making adjustments to cod recruitment, to vulnerability to predation of specific species, and to foraging times. Among the necessary adjustments were divergent trophic relationships between cod and clupeids: cod exhibited top-down control on sprat biomass, but had little influence on herring. Fishing, the chief source of mortality for cod and herring, and cod reproduction, as driven by oceanographic conditions as well as unexplained variability, were also key structuring forces. The model generated many hypotheses about relationships between key biota in the Baltic Sea food web and may ultimately provide a basis for estimating community responses to management actions.


Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2421
Author(s):  
Renate Kalnina ◽  
Ieva Demjanenko ◽  
Dzesika Gorbacenko ◽  
Valdis Priednieks ◽  
Janis Baronins

This case study presents the results of assessments of the potential risk of pollution by food waste in different applied shipping scenarios. A four-step model was used to analyse the applied procedures. The first step of the study involved the identification of possible strategies for on-board food waste management. In the second step, physicochemical tests of visually selected greywater detected high contents of nutrients (NTotal ≤ 238 mg·L−1 and PTotal ≤ 71 mg·L−1). Daily nutrient content (DNC) calculations of different food waste management scenarios allowed us to estimate the highest emission value from the discharge of greywater mixed with shredded food waste in the third step. In the final stage of the study, the results obtained made it possible to qualitatively assess the impact of DNC load on food waste management methods in the Baltic Sea environment. This study highlights the potential risk of polluting the Baltic Sea with nutrients and other contaminants in various scenarios, which will impact the marine recovery process. The presented research helps to outline waste management approaches for the reduction of these risks.


2016 ◽  
Vol 07 ◽  
Author(s):  
Markus V. Lindh ◽  
Johanna Sjöstedt ◽  
Michele Casini ◽  
Agneta Andersson ◽  
Catherine Legrand ◽  
...  

2012 ◽  
Vol 28 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Agnieszka Gałka ◽  
Józef Szmeja

Abstract We examined the distribution, resources and environmental conditions of the clonal aquatic fern Salvinia natans (L.) All., expansive in the Vistula delta (N Poland). Before 2006, there were 7 stands of this species, while in the years 2006-2010 their number increased to 21. The most abundant populations were found in the rivers: Tuga (133.0±37.6 indiv./0.1 m2), Fiszewka( 79.3±6.0), Szkarpawa (74.7±5.0), Struga Orłowska (61.0±2.0), Nogat (52.3±2.5), Elbląg (40.3±31.8), Wiślano-Zalewowy Canal (61.3±3.2) and in the SW part of Lake Druzno (72.3±2.5). S. natans did not colonise the weakly saline Vistula Lagoon and Elbląg Bay, which belong to the Baltic Sea. The plant under study occurred in shallow (2.2±1.5 m), narrow (17.9±13.6 m), slow-flowing (0.11±0.12 m s-1) and fertile (4.7±4.2 mg TN dm-3, 0.7±0.4 mg TP dm-3) watercourses. The water in them had neutral or alkaline pH (7.2-9.2) and was weakly saline (53.8±21.3 mg Cl dm-3). A dense mat of S. natans significantly affected the environmental conditions in the watercourses: water oxygenation, PAR intensity and concentration of biogenic substances, especially phosphorus, decreased.


2013 ◽  
Vol 50 (3) ◽  
pp. 680-690 ◽  
Author(s):  
Ulf Bergström ◽  
Göran Sundblad ◽  
Anna-Leena Downie ◽  
Martin Snickars ◽  
Christoffer Boström ◽  
...  

2020 ◽  
Author(s):  
Eva Ehrnsten ◽  
Alf Norkko ◽  
Bärbel Müller-Karulis ◽  
Erik Gustafsson ◽  
Bo Gustafsson

<p>Nutrient loading and climate change affect coastal ecosystems worldwide. Unravelling the combined effects of these pressures on benthic macrofauna is essential for understanding the future functioning of coastal ecosystems, as it is an important component linking the benthic and pelagic realms. In this study, we extended an existing model of benthic macrofauna coupled with the physical-biogeochemical BALTSEM model of the Baltic Sea to study the combined effects of changing nutrient loads and climate on biomass and metabolism of benthic macrofauna historically and in scenarios for the future. Based on a statistical comparison with a large validation dataset of measured biomasses, the model showed good or reasonable performance across the different basins and depth strata in the model area. In scenarios with decreasing nutrient loads according to the Baltic Sea Action Plan, but also with continued recent loads (mean loads 2012-2014), overall macrofaunal biomass and carbon processing were projected to decrease significantly by the end of the century despite improved oxygen conditions at the seafloor. Climate change led to intensified pelagic recycling of primary production and reduced export of particulate organic carbon to the seafloor with negative effects on macrofaunal biomass. In the high nutrient load scenario, representing the highest recorded historical loads, climate change counteracted the effects of increased productivity leading to a hyperbolic response: biomass and carbon processing increased up to mid-21<sup>st</sup> century but then decreased, giving almost no net change by the end of the 21<sup>st</sup> century compared to present. The study shows that benthic responses to environmental change are nonlinear and partly decoupled from pelagic responses and indicates that benthic-pelagic coupling might be weaker in a warmer and less eutrophic sea.</p>


Sign in / Sign up

Export Citation Format

Share Document