scholarly journals Effects of Wastewater Treatment Plant Effluent in a Receiving Stream on Reproductive Behavior of Fathead Minnows (Pimephales promelas)

Fishes ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 14
Author(s):  
Joseph M. Leese ◽  
Julia McMahon ◽  
Joseph C. Colosi

Wastewater treatment plant effluents contain a variety of endocrine disrupting chemicals (EDCs), including chemicals with estrogenic activity such as 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), and nonylphenols. These substances can affect both behavior and physiology in vertebrate animals. To explore the presence and effects of these EDCs in a natural setting, juvenile and adult male fathead minnows, Pimephales promelas, were held in cages upstream and downstream of the effluent site of a wastewater treatment plant for 21 days and subsequently tested for changes in reproductive behaviors and production of vitellogenin. Additionally, estrogenic activity in the stream was measured using a yeast bioassay. Estrogenicity was found to be significantly higher downstream of the wastewater effluent when compared to levels upstream. Vitellogenin levels did not show a correlational pattern with levels of estrogenicity in the water, but two measures of reproductive behaviors occurred significantly less often in downstream males than upstream males. This suggests that a brief (three-week) exposure to stream water containing wastewater treatment plant effluent can bring about changes in reproductive behavior of fish and that behavior may be more sensitive to low levels of environmental endocrine disruptors than vitellogenin production.

Author(s):  
Lídia Gaudêncio Ribeiro Silva ◽  
Elizângela Pinheiro Costa ◽  
Maria Clara Vieira Martins Starling ◽  
Taíza dos Santos Azevedo ◽  
Sue Ellen Costa Bottrel ◽  
...  

Author(s):  
Maria Clara V. M. Starling ◽  
Elizângela P. Costa ◽  
Felipe A. Souza ◽  
Elayne C. Machado ◽  
Juliana Calábria de Araujo ◽  
...  

AbstractThis work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82−) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82− at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82− was performed in a solar simulator (30 W m−2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82− and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82− showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L−1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L−1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82− (0.6 € m−3) compared to H2O2 (1.2 € m−3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


Author(s):  
José Roberto Guimarães ◽  
Regiane Aparecida Guadagnini ◽  
Regina Maura Bueno Franco ◽  
Luciana Urbano dos Santos

AbstractThis study evaluated the effectiveness of H


Sign in / Sign up

Export Citation Format

Share Document