scholarly journals A New Wall Model for Large Eddy Simulation of Separated Flows

Fluids ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 197 ◽  
Author(s):  
Ahmad Fakhari

The aim of this work is to propose a new wall model for separated flows which is combined with large eddy simulation (LES) of the flow field in the whole domain. The model is designed to give reasonably good results for engineering applications where the grid resolution is generally coarse. Since in practical applications a geometry can share body fitted and immersed boundaries, two different methodologies are introduced, one for body fitted grids, and one designed for immersed boundaries. The starting point of the models is the well known equilibrium stress model. The model for body fitted grid uses the dynamic evaluation of the von Kármán constant κ of Cabot and Moin (Flow, Turbulence and Combustion, 2000, 63, pp. 269–291) in a new fashion to modify the computation of shear velocity which is needed for evaluation of the wall shear stress and the near-wall velocity gradients based on the law of the wall to obtain strain rate tensors. The wall layer model for immersed boundaries is an extension of the work of Roman et al. (Physics of Fluids, 2009, 21, p. 101701) and uses a criteria based on the sign of the pressure gradient, instead of one based on the friction velocity at the projection point, to construct the velocity under an adverse pressure gradient and where the near-wall computational node is in the log region, in order to capture flow separation. The performance of the models is tested over two well-studied geometries, the isolated two-dimensional hill and the periodic two-dimensional hill, respectively. Sensitivity analysis of the models is also performed. Overall, the models are able to predict the first and second order statistics in a reasonable way, including the position and extension of the downward separation region.

2011 ◽  
Vol 686 ◽  
pp. 507-533 ◽  
Author(s):  
M. Inoue ◽  
D. I. Pullin

AbstractA near-wall subgrid-scale (SGS) model is used to perform large-eddy simulation (LES) of the developing, smooth-wall, zero-pressure-gradient flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. Large-eddy simulations of the turbulent boundary layer are reported at Reynolds numbers ${\mathit{Re}}_{\theta } $ based on the free-stream velocity and the momentum thickness in the range ${\mathit{Re}}_{\theta } = 1{0}^{3} \text{{\ndash}} 1{0}^{12} $. Results include the inverse square-root skin-friction coefficient, $ \sqrt{2/ {C}_{f} } $, velocity profiles, the shape factor $H$, the von Kármán ‘constant’ and the Coles wake factor as functions of ${\mathit{Re}}_{\theta } $. Comparisons with some direct numerical simulation (DNS) and experiment are made including turbulent intensity data from atmospheric-layer measurements at ${\mathit{Re}}_{\theta } = O(1{0}^{6} )$. At extremely large ${\mathit{Re}}_{\theta } $, the empirical Coles–Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that LES is suggestive of the asymptotic, infinite Reynolds number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum ${\mathit{Re}}_{\theta } $ of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger ${\mathit{Re}}_{\theta } $ could be achieved with quad- or higher-precision arithmetic.


2011 ◽  
Vol 347-353 ◽  
pp. 2165-2168 ◽  
Author(s):  
Jie Fu ◽  
Bin He ◽  
Hui Ling Zhang ◽  
Qin Shan Fan

In order to assess the performance of the two-dimensional (2D) large eddy simulation (LES) as a computational tool for analyzing separated flows. LES in various models has been developed to simulate turbulent flows, especially to separated flows. In this investigation, 2D LES is used to simulate flow past a wind turbine airfoil in deep stall which is a classical separated flow proved by experiments. The results of 2D LES are compared with that of a 3D model using RNS/LES hybrid methods and with experimental data. This shows that the 2D LES method can not only be used to simulate separated flows, but also the calculation time of 2D LES is significantly decreased to compare with the 3D model using RNS/LES hybrid methods.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 246
Author(s):  
Rozie Zangeneh

The Wall-modeled Large-eddy Simulation (WMLES) methods are commonly accompanied with an underprediction of the skin friction and a deviation of the velocity profile. The widely-used Improved Delayed Detached Eddy Simulation (IDDES) method is suggested to improve the prediction of the mean skin friction when it acts as WMLES, as claimed by the original authors. However, the model tested only on flow configurations with no heat transfer. This study takes a systematic approach to assess the performance of the IDDES model for separated flows with heat transfer. Separated flows on an isothermal wall and walls with mild and intense heat fluxes are considered. For the case of the wall with heat flux, the skin friction and Stanton number are underpredicted by the IDDES model however, the underprediction is less significant for the isothermal wall case. The simulations of the cases with intense wall heat transfer reveal an interesting dependence on the heat flux level supplied; as the heat flux increases, the IDDES model declines to predict the accurate skin friction.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 65 ◽  
Author(s):  
Arne Heinrich ◽  
Guido Kuenne ◽  
Sebastian Ganter ◽  
Christian Hasse ◽  
Johannes Janicka

Combustion will play a major part in fulfilling the world’s energy demand in the next 20 years. Therefore, it is necessary to understand the fundamentals of the flame–wall interaction (FWI), which takes place in internal combustion engines or gas turbines. The FWI can increase heat losses, increase pollutant formations and lowers efficiencies. In this work, a Large Eddy Simulation combined with a tabulated chemistry approach is used to investigate the transient near wall behavior of a turbulent premixed stoichiometric methane flame. This sidewall quenching configuration is based on an experimental burner with non-homogeneous turbulence and an actively cooled wall. The burner was used in a previous study for validation purposes. The transient behavior of the movement of the flame tip is analyzed by categorizing it into three different scenarios: an upstream, a downstream and a jump-like upstream movement. The distributions of the wall heat flux, the quenching distance or the detachment of the maximum heat flux and the quenching point are strongly dependent on this movement. The highest heat fluxes appear mostly at the jump-like movement because the flame behaves locally like a head-on quenching flame.


Author(s):  
Reza Mokhtarpoor ◽  
Stefan Heinz ◽  
Michael K. Stoellinger ◽  
Ponnampalam Balakumar

2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Hassan Raiesi ◽  
Ugo Piomelli ◽  
Andrew Pollard

The performance of some commonly used eddy-viscosity turbulence models has been evaluated using direct numerical simulation (DNS) and large-eddy simulation (LES) data. Two configurations have been tested, a two-dimensional boundary layer undergoing pressure-driven separation, and a square duct. The DNS and LES were used to assess the k−ε, ζ−f, k−ω, and Spalart–Allmaras models. For the two-dimensional separated boundary layer, anisotropic effects are not significant and the eddy-viscosity assumption works well. However, the near-wall treatment used in k−ε models was found to have a critical effect on the predictive accuracy of the model (and, in particular, of separation and reattachment points). None of the wall treatments tested resulted in accurate prediction of the flow field. Better results were obtained with models that do not require special treatment in the inner layer (ζ−f, k−ω, and Spalart–Allmaras models). For the square duct calculation, only a nonlinear constitutive relation was found to be able to capture the secondary flow, giving results in agreement with the data. Linear models had significant error.


2018 ◽  
Vol 15 (2) ◽  
pp. 75-89
Author(s):  
Muhammad Saiful Islam Mallik ◽  
Md. Ashraf Uddin

A large eddy simulation (LES) of a plane turbulent channel flow is performed at a Reynolds number Re? = 590 based on the channel half width, ? and wall shear velocity, u? by approximating the near wall region using differential equation wall model (DEWM). The simulation is performed in a computational domain of 2?? x 2? x ??. The computational domain is discretized by staggered grid system with 32 x 30 x 32 grid points. In this domain the governing equations of LES are discretized spatially by second order finite difference formulation, and for temporal discretization the third order low-storage Runge-Kutta method is used. Essential turbulence statistics of the computed flow field based on this LES approach are calculated and compared with the available Direct Numerical Simulation (DNS) and LES data where no wall model was used. Comparing the results throughout the calculation domain we have found that the LES results based on DEWM show closer agreement with the DNS data, especially at the near wall region. That is, the LES approach based on DEWM can capture the effects of near wall structures more accurately. Flow structures in the computed flow field in the 3D turbulent channel have also been discussed and compared with LES data using no wall model.


Sign in / Sign up

Export Citation Format

Share Document