scholarly journals Computing Effective Permeability of Porous Media with FEM and Micro-CT: An Educational Approach

Fluids ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 16 ◽  
Author(s):  
Rafael S. Vianna ◽  
Alexsander M. Cunha ◽  
Rodrigo B. V. Azeredo ◽  
Ricardo Leiderman ◽  
Andre Pereira

Permeability is a parameter that measures the resistance that fluid faces when flowing through a porous medium. Usually, this parameter is determined in routine laboratory tests by applying Darcy’s law. Those tests can be complex and time-demanding, and they do not offer a deep understanding of the material internal microstructure. Currently, with the development of new computational technologies, it is possible to simulate fluid flow experiments in computational labs. Determining permeability with this strategy implies solving a homogenization problem, where the determination of the macro parameter relies on the simulation of a fluid flowing through channels created by connected pores present in the material’s internal microstructure. This is a powerful example of the application of fluid mechanics to solve important industrial problems (e.g., material characterization), in which the students can learn basic concepts of fluid flow while practicing the implementation of computer simulations. In addition, it gives the students a concrete opportunity to work with a problem that associates two different scales. In this work, we present an educational code to compute absolute permeability of heterogeneous materials. The program simulates a Stokes flow in the porous media modeled with periodic boundary conditions using finite elements. Lastly, the permeability of a real sample of sandstone, modeled by microcomputed tomography (micro-CT), is obtained.

2021 ◽  
Author(s):  
Andres Gonzalez ◽  
Zoya Heidari ◽  
Olivier Lopez

Abstract Depositional mechanisms of sediments and post-depositional process often cause spatial variation and heterogeneity in rock fabric, which can impact the directional dependency of petrophysical, electrical, and mechanical properties. Quantification of the directional dependency of the aforementioned properties is fundamental for the appropriate characterization of hydrocarbon-bearing reservoirs. Anisotropy quantification can be accomplished through numerical simulations of physical phenomena such as fluid flow, gas diffusion, and electric current conduction in porous media using multi-scale image data. Typically, the outcome of these simulations is a transport property (e.g., permeability). However, it is also possible to quantify the tortuosity of the media used as simulation domain, which is a fundamental descriptor of the microstructure of the rock. The objectives of this paper are (a) to quantify tortuosity anisotropy of porous media using multi-scale image data (i.e., whole-core CT-scan and micro-CT-scan image stacks) through simulation of electrical potential distribution, diffusion, and fluid flow, and (b) to compare electrical, diffusional, and hydraulic tortuosity. First, we pre-process the images (i.e., CT-scan images) to remove non-rock material visual elements (e.g., core barrel). Then, we perform image analysis to identify different phases in the raw images. Then, we proceed with the numerical simulations of electric potential distribution. The simulation results are utilized as inputs for a streamline algorithm and subsequent direction-dependent electrical tortuosity estimation. Next, we conduct numerical simulation of diffusion using a random walk algorithm. The distance covered by each walker in each cartesian direction is used to compute the direction-dependent diffusional tortuosity. Finally, we conduct fluid-flow simulations to obtain the velocity distribution and compute the direction-dependent hydraulic tortuosity. The simulations are conducted in the most continuous phase of the segmented whole-core CT-scan image stacks and in the segmented pore-space of the micro-CT-scan image stacks. Finally, the direction-dependent tortuosity values obtained with each technique are employed to assess the anisotropy of the evaluated samples. We tested the introduced workflow on dual energy whole-core CT-scan images and on smaller scale micro-CT-scan images. The whole-core CT-scan images were obtained from a siliciclastic depth interval, composed mainly by spiculites. Micro-CT-scan images we obtained from Berea Sandstone and Austin Chalk formations. We observed numerical differences in the estimates of direction-dependent electrical, diffusional, and hydraulic tortuosity for both types of image data employed. The highest numerical differences were observed when comparing electrical and hydraulic tortuosity with diffusional tortuosity. The observed differences were significant specially in anisotropic samples. The documented comparison provides useful insight in the selection process of techniques for estimation of tortuosity. The use of core-scale image data in the proposed workflow provides semi-continuous estimates of tortuosity and tortuosity anisotropy which is typically not attainable when using pore-scale images. Additionally, the semi-continuous nature of the tortuosity and tortuosity anisotropy estimates in whole-core CT-scan image data provides an excellent tool for the selection of core plugs coring locations.


2020 ◽  
Vol 17 (36) ◽  
pp. 634-645
Author(s):  
Izzat Niazi SULAIMAN ◽  
Yahya Jirjees TAWFEEQ

Practically all studies of reservoir engineering involve detailed knowledge of fluid flow characteristics. The fluid flow performance in porous media is affected by pressure, flow rate, and volume of single fluid phases. Permeability is a measure of how well a porous media allows the flow of fluids through it. Permeability and porosity form the two significant characteristics of reservoir rocks. This research aimed to present the design of laboratory equipment to test the ability of fluid flow through different sandstone samples. Two sand core samples (coarse sand sample and fine sand sample) were tested. The laboratory findings measurements of porosity, saturation, total permeability, effective permeability, and relative permeability were evaluated. The laboratory tests were performed on partially saturated, unconsolidated core sand for two-phase fluid flow. The experimental work was developed for measuring the flow capacity achieved under the steady-state conditions method. Various grain sizes sands were selected as a porous medium to determine petrophysical properties and fluid flow capacity of the rock sample. Nitrogen and air were utilized as gas-phases, and, for liquid-phases, water was chosen as an injection fluid. The steady-state process method was used to determine the permeability and relative permeability of unconsolidated sands to water flow. Different flow rates were measured for different pressure gradients in a viscose flow. As the flow rate increases, the pressure difference also increased. It can be observed that there are a direct correlation and relationship between the flow rate and the pressure difference. The core plug's absolute permeability was measured using Darcy Equation. Absolute permeability does not depend on fluid characteristics but only on media properties. The sample container contains a more significant amount of sand, decrease the permeability, and therefore requires high pressure for fluid flowing within the sample.


1958 ◽  
Vol 35 (2) ◽  
pp. 63-64 ◽  
Author(s):  
T O'Donnell ◽  
D H Edwards ◽  
N Collis-George ◽  
E G Youngs

2020 ◽  
Vol 146 ◽  
pp. 01005
Author(s):  
Jelayne Falat ◽  
Adam Fehr ◽  
Ali Telmadarreie ◽  
Steven Bryant

Understanding fluid flow in porous media is essential with complex and multiphase fluid flow. We demonstrate that high-resolution in-line density measurements are a valuable tool in this regard. An in-line densitometer is used in fluid flow in porous media applications to quantify fluid production and obtain quantitative and qualitative information such as breakthrough times, emulsion/foam generation, and steam condensation. In order to determine the potential applications for in-line densitometry for fluid flow in porous media, a series of sand pack floods were performed with a densitometer placed at the outlet of a sand pack. All fluids passed through the measurement cell at experiential temperatures and pressures. An algorithm was developed and applied to the density data to provide a quantitative determination of oil and water production. The second series of tests were performed at high temperature and pressure, with a densitometer placed at the inlet and outlet of a sand pack, for steam applications. In both series of experiments, data acquisition was collected at 1 hertz and the analyzed density data was compared to results from the conventional effluent analysis, including Dean-Stark, toluene separations, magnetic susceptibility measurement, and flash calculations where applicable. The high-resolution monitoring of effluent from a flow experiment through porous media in a system with two phases of known densities enables two-phase production to be accurately quantified in the case of both light and heavy oil. The frequency of measurements results in a high-resolution history of breakthrough times and fluid behavior. In the case of monitoring steam injection processes, reliable laboratory tests show that in-line density measurements enable the determination of steam quality at the inlet and outlet of a sand pack and qualitative determination of steam condensation monitoring The use of in-line densitometry provides insight on the monitoring of complex fluid flow in porous media, which typical bulk effluent analysis is not able to do. The ability to measure produced fluids at high resolution and extreme temperatures reduces mass balance error associated with the effluent collection and broadens our understanding of complex fluid flow in porous media.


2011 ◽  
Vol 339 ◽  
pp. 227-233 ◽  
Author(s):  
Jun Xi Xie ◽  
Qi Zhi Teng ◽  
Yu Chen Liu

Pore-network is a useful tool in the study of porous media. It makes it possible to exam the structure of a porous media and to carry out simulations in a macroscopic way. For instance, with a pore-network, the calculation of permeability can be done by implementing Darcy’s law, a formula in a proportional form. In this paper, the inscribed sphere algorithm is introduced to extract the pore-network from micro-CT images. Also methods for determining shape factor and conductance are introduced. Several samples with different porosity are used for test. Absolute permeability is calculated based on two different ways of evaluating conductance, and the results are compared and analyzed.


Sign in / Sign up

Export Citation Format

Share Document