scholarly journals The Coupled Volume of Fluid and Brinkman Penalization Methods for Simulation of Incompressible Multiphase Flows

Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 334
Author(s):  
Evgenii L. Sharaborin ◽  
Oleg A. Rogozin ◽  
Aslan R. Kasimov

In this work, we contribute to the development of numerical algorithms for the direct simulation of three-dimensional incompressible multiphase flows in the presence of multiple fluids and solids. The volume of fluid method is used for interface tracking, and the Brinkman penalization method is used to treat solids; the latter is assumed to be perfectly superhydrophobic or perfectly superhydrophilic, to have an arbitrary shape, and to move with a prescribed velocity. The proposed algorithm is implemented in the open-source software Basilisk and is validated on a number of test cases, such as the Stokes flow between a periodic array of cylinders, vortex decay problem, and multiphase flow around moving solids.

1999 ◽  
Vol 152 (2) ◽  
pp. 423-456 ◽  
Author(s):  
Denis Gueyffier ◽  
Jie Li ◽  
Ali Nadim ◽  
Ruben Scardovelli ◽  
Stéphane Zaleski

2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


Author(s):  
L. Salles ◽  
M. Vahdati

The aim of this paper is to study the effects of mistuning on fan flutter and to compare the prediction of two numerical models of different fidelity. The high fidelity model used here is a three-dimensional, whole assembly, time-accurate, viscous, finite-volume compressible flow solver. The Code used for this purpose is AU3D, written in Imperial College and validated for flutter computations over many years. To the best knowledge of authors, this is the first time such computations have been attempted. This is due to the fact that, such non-linear aeroelastic computations with mistuning require large amount of CPU time and cannot be performed routinely and consequently, faster (low fidelity) models are required for this task. Therefore, the second model used here is the aeroelastic fundamental mistuning model (FMM) and it based on an eigenvalue analysis of the linearized modal aeroelastic system with the aerodynamic matrix calculated from the aerodynamic influence coefficients. The influence coefficients required for this algorithm are obtained from the time domain non-linear Code by shaking one blade in the datum (tuned) frequency and mode. Once the influence coefficients have been obtained, the computations of aero damping require minimal amount of CPU time and many different mistuning patterns can be studied. The objectives of this work are to: 1. Compare the results between the two models and establish the capabilities/limitations of aeroelastic FMM, 2. Check if the introduction of mistuning would bring the experimental and computed flutter boundaries closer, 3. Establish a relationship between mistuning and damping. A rig wide-chord fan blade, typical of modern civil designs, was used as the benchmark geometry for this study. All the flutter analyses carried out in this paper are with frequency mistuning, but the possible consequences of mistuned mode shapes are briefly discussed at the end of this paper. Only the first family of modes (1F, first flap) is considered in this work. For the frequency mistuning analysis, the 1F frequency is varied around the annulus but the 1F mode shapes remain the same for all the blades. For the mode shape mistuning computations, an FE analysis of the whole assembly different mass blades is performed. The results of this work clearly show the importance of mistuning on flutter. It also demonstrates that when using rig test data for aeroelastic validation of CFD codes, the amount mistuning present must be known. Finally, it should be noted that the aim of this paper is the study of mistuning and not steady/unsteady validation of a CFD code and therefore minimal aerodynamic data are presented.


1993 ◽  
Vol 115 (1) ◽  
pp. 121-127 ◽  
Author(s):  
E. Bonataki ◽  
P. Chaviaropoulos ◽  
K. D. Papailiou

The calculation of the blade shape, when the desired velocity distribution is imposed, has been the object of numerous investigations in the past. The object of this paper is to present a new method suitable for the design of turbomachinery stator and rotor blade sections, lying on an arbitrary axisymmetric stream-surface with varying streamtube width. The flow is considered irrotational in the absolute frame of reference and compressible. The given data are the streamtube geometry, the number of blades, the inlet flow conditions and the suction and pressure side velocity distributions as functions of the normalized arc-length. The output of the computation is the blade shape that satisfies the above data. The method solves an elliptic type partial differential equation for the velocity modulus with Dirichlet and periodic type boundary conditions on the (potential function, stream function)-plane (Φ, Ψ). The flow angle field is subsequently calculated solving an ordinary differential equation along the iso-Φ or iso-Ψ lines. The blade coordinates are, finally, computed by numerical integration. A set of closure conditions has been developed and discussed in the paper. The method is validated on several test cases and a discussion is held concerning its application and limitations.


2016 ◽  
Vol 9 (11) ◽  
pp. 4071-4085 ◽  
Author(s):  
Esteban Acevedo-Trejos ◽  
Gunnar Brandt ◽  
S. Lan Smith ◽  
Agostino Merico

Abstract. Biodiversity is one of the key mechanisms that facilitate the adaptive response of planktonic communities to a fluctuating environment. How to allow for such a flexible response in marine ecosystem models is, however, not entirely clear. One particular way is to resolve the natural complexity of phytoplankton communities by explicitly incorporating a large number of species or plankton functional types. Alternatively, models of aggregate community properties focus on macroecological quantities such as total biomass, mean trait, and trait variance (or functional trait diversity), thus reducing the observed natural complexity to a few mathematical expressions. We developed the PhytoSFDM modelling tool, which can resolve species discretely and can capture aggregate community properties. The tool also provides a set of methods for treating diversity under realistic oceanographic settings. This model is coded in Python and is distributed as open-source software. PhytoSFDM is implemented in a zero-dimensional physical scheme and can be applied to any location of the global ocean. We show that aggregate community models reduce computational complexity while preserving relevant macroecological features of phytoplankton communities. Compared to species-explicit models, aggregate models are more manageable in terms of number of equations and have faster computational times. Further developments of this tool should address the caveats associated with the assumptions of aggregate community models and about implementations into spatially resolved physical settings (one-dimensional and three-dimensional). With PhytoSFDM we embrace the idea of promoting open-source software and encourage scientists to build on this modelling tool to further improve our understanding of the role that biodiversity plays in shaping marine ecosystems.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lucas M. Ritschl ◽  
Paul Kilbertus ◽  
Florian D. Grill ◽  
Matthias Schwarz ◽  
Jochen Weitz ◽  
...  

BackgroundMandibular reconstruction is conventionally performed freehand, CAD/CAM-assisted, or by using partially adjustable resection aids. CAD/CAM-assisted reconstructions are usually done in cooperation with osteosynthesis manufacturers, which entails additional costs and longer lead time. The purpose of this study is to analyze an in-house, open-source software-based solution for virtual planning.Methods and MaterialsAll consecutive cases between January 2019 and April 2021 that underwent in-house, software-based (Blender) mandibular reconstruction with a free fibula flap (FFF) were included in this cross-sectional study. The pre- and postoperative Digital Imaging and Com munications in Medicine (DICOM) data were converted to standard tessellation language (STL) files. In addition to documenting general information (sex, age, indication for surgery, extent of resection, number of segments, duration of surgery, and ischemia time), conventional measurements and three-dimensional analysis methods (root mean square error [RMSE], mean surface distance [MSD], and Hausdorff distance [HD]) were used.ResultsTwenty consecutive cases were enrolled. Three-dimensional analysis of preoperative and virtually planned neomandibula models was associated with a median RMSE of 1.4 (0.4–7.2), MSD of 0.3 (-0.1–2.9), and HD of 0.7 (0.1–3.1). Three-dimensional comparison of preoperative and postoperative models showed a median RMSE of 2.2 (1.5–11.1), MSD of 0.5 (-0.6–6.1), and HD of 1.5 (1.1–6.5) and the differences were significantly different for RMSE (p < 0.001) and HD (p < 0.001). The difference was not significantly different for MSD (p = 0.554). Three-dimensional analysis of virtual and postoperative models had a median RMSE of 2.3 (1.3–10.7), MSD of -0.1 (-1.0–5.6), and HD of 1.7 (0.1–5.9).ConclusionsOpen-source software-based in-house planning is a feasible, inexpensive, and fast method that enables accurate reconstructions. Additionally, it is excellent for teaching purposes.


1987 ◽  
Vol 109 (4) ◽  
pp. 345-352 ◽  
Author(s):  
M. Reggio ◽  
R. Camarero

A numerical procedure to solve three-dimensional incompressible flows in arbitrary shapes is presented. The conservative form of the primitive-variable formulation of the time-dependent Navier-Stokes equations written for a general curvilinear coordiante system is adopted. The numerical scheme is based on an overlapping grid combined with opposed differencing for mass and pressure gradients. The pressure and the velocity components are stored at the same location: the center of the computational cell which is used for both mass and the momentum balance. The resulting scheme is stable and no oscillations in the velocity or pressure fields are detected. The method is applied to test cases of ducting and the results are compared with experimental and numerical data.


Sign in / Sign up

Export Citation Format

Share Document