Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows

1999 ◽  
Vol 152 (2) ◽  
pp. 423-456 ◽  
Author(s):  
Denis Gueyffier ◽  
Jie Li ◽  
Ali Nadim ◽  
Ruben Scardovelli ◽  
Stéphane Zaleski
Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 334
Author(s):  
Evgenii L. Sharaborin ◽  
Oleg A. Rogozin ◽  
Aslan R. Kasimov

In this work, we contribute to the development of numerical algorithms for the direct simulation of three-dimensional incompressible multiphase flows in the presence of multiple fluids and solids. The volume of fluid method is used for interface tracking, and the Brinkman penalization method is used to treat solids; the latter is assumed to be perfectly superhydrophobic or perfectly superhydrophilic, to have an arbitrary shape, and to move with a prescribed velocity. The proposed algorithm is implemented in the open-source software Basilisk and is validated on a number of test cases, such as the Stokes flow between a periodic array of cylinders, vortex decay problem, and multiphase flow around moving solids.


2020 ◽  
Vol 22 (4) ◽  
pp. 939-958
Author(s):  
Indrajit Roy ◽  
D. P. Acharya ◽  
Sourav Acharya

AbstractThe present paper investigates the propagation of quasi longitudinal (qLD) and quasi transverse (qTD) waves in a magneto elastic fibre-reinforced rotating semi-infinite medium. Reflections of waves from the flat boundary with surface stress have been studied in details. The governing equations have been used to obtain the polynomial characteristic equation from which qLD and qTD wave velocities are found. It is observed that both the wave velocities depend upon the incident angle. After imposing the appropriate boundary conditions including surface stress the resultant amplitude ratios for the total displacements have been obtained. Numerically simulated results have been depicted graphically by displaying two and three dimensional graphs to highlight the influence of magnetic field, rotation, surface stress and fibre-reinforcing nature of the material medium on the propagation and reflection of plane waves.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 40 ◽  
Author(s):  
Md Irfanul Haque Siddiqui ◽  
Man-Hoe Kim

The sequential casting of slabs is a major trend in the steel industry where steel quality is the most important factor. The operating parameters have the most influence on mixing phenomenon apart from the design and shapes of the tundish and its furniture. Moreover, in industrial practice, the bath height in tundish varied with time when the ladle is changed. In the present work, the numerical simulation has been carried out to study the effect of residual volume and outflow (throughput) rate on the mixing phenomenon inside the tundish. A transient, three-dimensional two-phase model using the Volume of Fluid (VOF) method and Level Set interface tracking method has been used to investigate the intermixed grade steel formation. A comparison of the two interface tracking schemes, i.e., Geo-reconstruct and Modified HRIC (High-Resolution Interface Capturing Scheme) has also been presented. The results obtained through numerical simulation has been compared with experimental results. In a later section, the results showed that residual volume has a significant effect on the grade mixing. The mixing phenomenon in tundish is considerably influenced by the advance-pouring box (APB). Further, the outflow rate of tundish has little impact on the grade intermixing phenomenon.


1976 ◽  
Vol 98 (2) ◽  
pp. 164-172 ◽  
Author(s):  
L. Mirandy ◽  
B. Paul

The stress field associated with a thin ellipsoidal cavity in an isotropic elastic medium with arbitrary tractions at distant boundaries is needed to generalize Griffith’s two-dimensional fracture criterion. Such a solution is given here. It is first formulated for a general ellipsoidal cavity having principal semiaxes a, b, and c, and then it is reduced to the specific case of a “flat” ellipsoid for which a and b are very much greater than c. An explicit solution of the general problem is possible but the results are somewhat unwieldy. The dominant terms of an asymptotic solution for small c/b, however, are shown to provide remarkably simple expressions for the stresses everywhere on the surface of the cavity. The applied normal stress parallel to the c axis and the shears lying in a plane perpendicular to it were found to produce surface stresses proportional to (b/c) × applied stress, with the amplification of other components of applied stress being negligible in comparison. Analytical expressions for the location and magnitude of the maximum surface stress are developed along with stress intensity factors for the elliptical crack (c = 0). Three dimensional effects due to ellipsoidal planform aspect ratio (b/a) and Poisson’s ratio are reported.


Author(s):  
H. Shmueli ◽  
G. Ziskind ◽  
R. Letan

The present study deals with single bubble growth on an uneven wall. A model problem is defined and solved using a three-dimensional numerical simulation. The wall has the shape of a triangular cavity and feature vortices. The equations solved in the present study are based on macro region modelling of the bubble alone and describe its growth from the initial state to detachment from the surface and consequent motion. The model includes a simultaneous solution of conservation equations for the liquid and gaseous phases, in conjunction with three-dimensional interface tracking. The latter is achieved using the level-set method. The numerical modeling includes the multi-grid method. The complete three-dimensional model is discretized using an original in-house numerical code realized in MATLAB. Different cases of bubble growth on the triangular cavity walls are investigated. The main conclusion from the calculations is that the bubble shape and its growth rate strongly depend on its location and on the channel orientation. New features, not possible for flat walls and special for this case, are revealed and discussed. It is demonstrated that under certain conditions, the bubble is obstructed by the surface geometry. It is also shown how a growing bubble affects the flow field inside a cavity, interacting with the vortex structure.


Sign in / Sign up

Export Citation Format

Share Document