scholarly journals Stability of a Buoyant Oldroyd-B Flow Saturating a Vertical Porous Layer with Open Boundaries

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 375
Author(s):  
Stefano Lazzari ◽  
Michele Celli ◽  
Antonio Barletta

The performance of several engineering applications are strictly connected to the rheology of the working fluids and the Oldroyd-B model is widely employed to describe a linear viscoelastic behaviour. In the present paper, a buoyant Oldroyd-B flow in a vertical porous layer with permeable and isothermal boundaries is investigated. Seepage flow is modelled through an extended version of Darcy’s law which accounts for the Oldroyd-B rheology. The basic stationary flow is parallel to the vertical axis and describes a single-cell pattern where the cell has an infinite height. A linear stability analysis of such a basic flow is carried out to determine the onset conditions for a multicellular pattern. This analysis is performed numerically by employing the shooting method. The neutral stability curves and the values of the critical Rayleigh number are evaluated for different retardation time and relaxation time characteristics of the fluid. The study highlights the extent to which the viscoelasticity has a destabilising effect on the buoyant flow. For the limiting case of a Newtonian fluid, the known results available in the literature are recovered, namely a critical value of the Darcy–Rayleigh number equal to 197.081 and a corresponding critical wavenumber of 1.05950.

Author(s):  
Stefano Lazzari ◽  
Michele Celli ◽  
Antonio Barletta

The Oldroyd–B model for a linear viscoelastic fluid is employed to investigate the buoyant flow in a vertical porous layer with permeable boundaries kept at different uniform temperatures. Seepage flow in the viscoelastic fluid saturated porous layer is modelled through an extended version of Darcy’s law taking into account the Oldroyd–B rheology. The basic stationary flow is parallel to the vertical axis and describes a single–cell vertical pattern where the cell has an infinite vertical height. A linear stability analysis of such a basic flow is carried out to determine the onset conditions for a multicellular pattern. The neutral stability curves and the values of the critical Rayleigh number are evaluated numerically for different retardation time and relaxation time characteristics of the fluid.


Author(s):  
Florinda Capone ◽  
Jacopo A. Gianfrani

AbstractThe onset of natural convection in a fluid-saturated anisotropic porous layer, which rotates about the vertical axis, under the hypothesis of local thermal non-equilibrium, is analysed. Since the porosity of the medium is assumed to be high, the more suitable Darcy-Brinkman model is adopted. Linear instability analysis of the conduction solution is carried out. Nonlinear stability with respect to $$L^2$$ L 2 -norm is performed in order to prove the coincidence between the linear instability and the global nonlinear stability thresholds. The effect of both rotation and thermal and mechanical anisotropies on the critical Rayleigh number for the onset of instability is discussed.


Author(s):  
Saneshan Govender

In both pure fluids and porous media, the density gradient becomes unstable and fluid motion (convection) occurs when the critical Rayleigh number is exceeded. The classical stability analysis no longer applies if the Rayleigh number is time dependant, as found in systems where the density gradient is subjected to vibration. The influence of vibrations on thermal convection depends on the orientation of the time dependant acceleration with respect to the thermal stratification. The problem of a vibrating porous cylinder has numerous important engineering applications, the most important one being in the field of binary alloy solidification. In particular we may extend the above results to understanding the dynamics in the mushy layer (essentially a reactive porous medium) that is sandwiched between the underlying solid and overlying melt regions. Alloyed components are widely used in demanding and critical applications, such as turbine blades, and a consistent internal structure is paramount to the performance and integrity of the component. Alloys are susceptible to the formation of vertical channels which are a direct result of the presence convection, so any technique that suppresses convection/the formation of channels would be welcomed by the plant metallurgical engineer. In the current study, the linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogeneous cylindrical porous layer heated from below. The linear stability results show that increasing the frequency of vibration stabilizes the convection. In addition the aspect ratio of the porous cylinder is shown to influence the stability of convection for all frequencies analysed. It was also observed that only synchronous solutions are possible in cylindrical porous layers, with no transition to sub harmonic solutions as was the case in Govender (2005a) for rectangular layers or cavities. The results of the current analysis will be used in the formulation of a model for binary alloy systems that includes the reactive porous medium model.


1964 ◽  
Vol 20 (1) ◽  
pp. 103-113 ◽  
Author(s):  
N. T. Dunwoody

The instability to small two-dimensional disturbances of an electrically conducting fluid of variable density is investigated. The viscous fluid is bounded between two vertical parallel planes normal to which a magnetic field of constant intensity is applied. Significant parameters upon which the behaviour of the Rayleigh number at neutral stability depends are the Hartmann number M and the wave-number α which is associated with a periodic disturbance with periodicity in the unbounded horizontal direction.The solution may be sought by considering basic disturbances which are either symmetric or antisymmetric about the median plane parallel to the boundary planes. It is found that for a given magnetic field strength the critical Rayleigh number governing stability is associated with an antisymmetric disturbance of zero wave-number. The least stable symmetric disturbance which arises when the wave-number is zero is less easily excited. This trend is seen again in the purely hydrodynamic case (M = 0) where, corresponding to a finite wave-numbe value, the more unstable mode at neutral stability is found to be an antisymmetric one.The most unstable situation occurs when both the Hartmann number and the wave number zero. In this case the result of Wooding (1960) that the minimum critical Rayleigh number is zero and is associated with a symmetric disturbance is reobtained.


1983 ◽  
Vol 105 (3) ◽  
pp. 476-484 ◽  
Author(s):  
D. Poulikakos ◽  
A. Bejan

Scaling arguments and numerical analysis are used to document the transient and steady-state regimes of natural convection in a triangular porous layer cooled from above (along the sloping wall). The numerical simulations are conducted in the high Rayleigh number domain, Ra = 100, 1000, where Ra is the Darcy-modified Rayleigh number based on height, H. The scale analysis predicts the existence of distinct thermal boundary layers if Ra1/2 (H/L) > 1, where H/L is the height/length geometric ratio of the attic-shaped porous layer. The numerical simulations confirm the scaling results, as well as the prediction that the flow consists primarily of an elongated horizontal counterflow driven by the cold wall. In addition, the numerical solutions show the presence of a Be´nard-type instability at high enough Rayleigh numbers. For example, if H/L = 0.2, the instability is present when Ra > 620; this critical Rayleigh number is found to increase as H/L increases.


1990 ◽  
Vol 68 (12) ◽  
pp. 1446-1453 ◽  
Author(s):  
N. Rudraiah ◽  
P. V. Radhadevi ◽  
P. N. Kaloni

The linear stability of a viscoelastic fluid-saturated sparsely packed porous layer heated from below is studied analytically using the Darcy–Brinkman–Jeffreys model with different boundary combinations. The Galerkin technique is employed to determine the criterion for the onset of oscillatory convection. The effects of the viscoelastic parameters, the Prandtl number, and the porous parameter on the critical Rayleigh number, the wave number, and the frequency are analyzed. The results are compared with those obtained for both a Darcy–Jeffrey fluid and a Maxwell fluid. It is shown that under certain conditions for the viscoelastic parameters, the flow is overstable. The possibility of the occurrence of bifurcation is also discussed.


1970 ◽  
Vol 40 (3) ◽  
pp. 549-576 ◽  
Author(s):  
J. A. Whitehead ◽  
M. M. Chen

Results of linear stability calculations and post-stability experimental observations are reported for horizontal fluid layers with upward heat flux bounded below by a stably stratified fluid. Stability calculations were done for several families of continuous and discontinuous temperature distributions, and it was found that as a rule the flow originating in the unstable layer penetrates into the stably stratified region, resulting in increased critical cell size and correspondingly decreased critical Rayleigh number. A notable exception to this occurs for an unstable layer with a linear temperature distribution adjacent to a stable layer of very high stable density gradient. In this case energy pumped from the unstable to the stable region is sufficient to raise the critical Rayleigh number above that of a solid boundary. It is also found that, for density distributions with a more gradual transition between the stable and the unstable regions, the effect of increased cell size upon the critical Rayleigh number is sometimes masked by effects of curvature in the density profile of the unstable region, which tends to increase the critical Rayleigh number. The inadequacy of the usual definition of Rayleigh number to characterize the stability of such complex systems is discussed. Experimentally, such a temperature distribution was produced by radiant energy from above as it was absorbed by the top few centimetres of the fluid. Within an uncertainty of ± 20%, it was found that the critical experimental Rayleigh number agreed with neutral stability calculations. The supercritical convective motion consisted of vertical jets of cool surface fluid which plunged downward into the interior of the fluid. The jets were not arranged in an orderly lattice but were in a constant state of change, each jet having a tendency to merge with a close neighbour. The net loss of jets due to merging was balanced by new jets spontaneously appearing. As Rayleigh number was increased, the mean number of jets and the intermittancy increased proportionally. Temperature scans taken with a movable probe showed that cool surface fluid plunging downward in the jets was confined to a fairly restricted region, the surrounding fluid being quite isothermal.


1987 ◽  
Vol 109 (4) ◽  
pp. 889-893 ◽  
Author(s):  
L. P. Kwok ◽  
C. F. Chen

Experiments were carried out to study the stability of thermal convection generated in a vertical porous layer by lateral heating in a tall, narrow tank. The porous medium, consisting of glass beads, was saturated with distilled water. It was found that the flow became unstable at a critical ΔT of 29.2°C (critical Rayleigh number of 66.2). Linear stability analysis was applied to study the effects of the Brinkman term and of variable viscosity separately using a quadratic relationship between the density and temperature. It was found that with the Brinkman term, no instability could occur within the allowable temperature difference across the tank. With the effect of variable viscosity included, linear stability theory predicts a critical ΔT of 43.4°C (Rayleigh number of 98.3).


1999 ◽  
Vol 121 (4) ◽  
pp. 1094-1097 ◽  
Author(s):  
C. Y. Wang

The thermoconvective stability of a porous layer overlying a solid layer is important in seafloor hydrothermal systems and thermal insulation problems. The case for constant flux bottom heating is considered. The critical Rayleigh number for the porous layer is found to increase with the thickness of the solid layer, a result opposite to constant temperature heating.


Sign in / Sign up

Export Citation Format

Share Document