scholarly journals Thermal convection for a Darcy-Brinkman rotating anisotropic porous layer in local thermal non-equilibrium

Author(s):  
Florinda Capone ◽  
Jacopo A. Gianfrani

AbstractThe onset of natural convection in a fluid-saturated anisotropic porous layer, which rotates about the vertical axis, under the hypothesis of local thermal non-equilibrium, is analysed. Since the porosity of the medium is assumed to be high, the more suitable Darcy-Brinkman model is adopted. Linear instability analysis of the conduction solution is carried out. Nonlinear stability with respect to $$L^2$$ L 2 -norm is performed in order to prove the coincidence between the linear instability and the global nonlinear stability thresholds. The effect of both rotation and thermal and mechanical anisotropies on the critical Rayleigh number for the onset of instability is discussed.

Author(s):  
Florinda Capone ◽  
Maurizio Gentile ◽  
Jacopo A. Gianfrani

Abstract The onset of thermal convection in an anisotropic horizontal porous layer heated from below and rotating about vertical axis, under local thermal non-equilibrium hypothesis is studied. Linear and nonlinear stability analysis of the conduction solution is performed. Coincidence between the linear instability and the global nonlinear stability thresholds with respect to the L2—norm is proved. Article Highlights A necessary and sufficient condition for the onset of convection in a rotating anisotropic porous layer has been obtained. It has been proved that convection can occur only through a steady motion. A detailed proof is reported thoroughly. Numerical analysis shows that permeability promotes convection, while thermal conductivities and rotation stabilize conduction.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 375
Author(s):  
Stefano Lazzari ◽  
Michele Celli ◽  
Antonio Barletta

The performance of several engineering applications are strictly connected to the rheology of the working fluids and the Oldroyd-B model is widely employed to describe a linear viscoelastic behaviour. In the present paper, a buoyant Oldroyd-B flow in a vertical porous layer with permeable and isothermal boundaries is investigated. Seepage flow is modelled through an extended version of Darcy’s law which accounts for the Oldroyd-B rheology. The basic stationary flow is parallel to the vertical axis and describes a single-cell pattern where the cell has an infinite height. A linear stability analysis of such a basic flow is carried out to determine the onset conditions for a multicellular pattern. This analysis is performed numerically by employing the shooting method. The neutral stability curves and the values of the critical Rayleigh number are evaluated for different retardation time and relaxation time characteristics of the fluid. The study highlights the extent to which the viscoelasticity has a destabilising effect on the buoyant flow. For the limiting case of a Newtonian fluid, the known results available in the literature are recovered, namely a critical value of the Darcy–Rayleigh number equal to 197.081 and a corresponding critical wavenumber of 1.05950.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
C. Y. Wang

Abstract Using an efficient Ritz method, the thermoconvective stability of a bottom-heated porous layer in vertical elliptic and semi-elliptic enclosures with adiabatic side walls is studied. The stability mosaics for the critical Rayleigh number and the preferred modes are determined for various aspect ratios.


Author(s):  
B. Straughan

This paper investigates thermal convection in an anisotropic bidisperse porous medium. A bidisperse porous medium is one which possesses the usual pores, but in addition, there are cracks or fissures in the solid skeleton and these give rise to a second porosity known as micro porosity. The novelty of this paper is that the macro permeability and the micro permeability are each diagonal tensors but the three components in the vertical and in the horizontal directions may be distinct in both the macro and micro phases. Thus, there are six independent permeability coefficients. A linear instability analysis is presented and a fully nonlinear stability analysis is inferred. Several Rayleigh number and wavenumber calculations are presented and it is found that novel cell structures are predicted which are not present in the single porosity case.


1996 ◽  
Vol 324 ◽  
pp. 223-259 ◽  
Author(s):  
A. J. Hillesdon ◽  
T. J. Pedley

When a suspension of the bacteriumBacillus subtilisis placed in a chamber with its upper surface open to the atmosphere, complex bioconvection patterns form. These arise because the cells (a) are denser than water, and (b) swim upwards on average so that the density of an initially uniform suspension becomes greater at the top than at the bottom. When the vertical density gradient becomes large enough an overturning instability occurs which evolves ultimately into the observed patterns. The cells swim upwards because they are oxytactic, i.e. they swim up gradients of oxygen, and they consume oxygen. These properties are incorporated in conservation equations for the cell and oxygen concentrations, which, for the pre-instability stage of the pattern formation process, have been solved in a previous paper (Hillesdon, Pedley & Kessler 1995). In this paper we carry out a linear instability analysis of the steady-state cell and oxygen concentration distributions. There are intrinsic differences between the shallow-and deep-chamber cell concentration distributions, with the consequence that the instability is non-oscillatory in shallow chambers, but must be oscillatory in deep chambers whenever the critical wavenumber is non-zero. We investigate how the critical Rayleigh number for the suspension varies with the three independent parameters of the problem and discuss the most appropriate definition of the Rayleigh number. Several qualitative aspects of the solution of the linear instability problem agree with experimental observation.


Author(s):  
Vinicius Daroz ◽  
Silvio L. M. Junqueira ◽  
Admilson T. Franco ◽  
José L. Lage

The critical Rayleigh number at the onset of natural convection within a square cavity filled with a centralized porous block was investigated. The porous medium is modeled by using the heterogeneous model and the governing equations are solved for each phase separately. The thermal gradient is applied from the bottom to the top horizontal walls while the vertical walls are kept adiabatic. The amount of solid within the cavity was kept constant by fixing both external and internal porosity in 36% and 40%, respectively. The equations are solved using the Finite Volume Method and the interpolation scheme for the convective terms is the Hybrid Scheme. For the pressure-velocity coupling, the SIMPLEC method is used. The effects on the conductive-convective regime transition, reads critical Rayleigh Number, characterized by the average Nusselt number and the heatlines contour plot, was investigated by varying the Rayleigh number and the porous block permeability. The results show that the so called critical Rayleigh number is affected by the block permeability. As the permeability decreases, the flow tends to recirculate around the block being squeezed against the cavity walls and therefore, more susceptible to viscous effects. A correlation to the critical Rayleigh number is presented as a function of the agglomerate permeability showing that the higher the permeability the lower the amount of energy required to trigger the convection.


2017 ◽  
Vol 95 (3) ◽  
pp. 238-252 ◽  
Author(s):  
T. Armaghani ◽  
Muneer A. Ismael ◽  
Ali J. Chamkha

The present numerical study investigates the analysis of thermodynamic irreversibility generation and the natural convection in inclined partially porous layered cavity filled with a Cu–water nanofluid. The finite difference method with up-wind scheme is used to solve the governing equations. The study is achieved by examining the effects of nanoparticle volume fraction, inclination angle, and the porous layer thickness. Besides, the computations are achieved within the laminar range of the Rayleigh number. The results show that at Ra = 104, a reduction of total entropy generation is recorded with increasing nanoparticle volume fraction when the porous layer thickness is greater than 0.2. Moreover, when Ra is less than 105, the nanoparticle volume fraction increases the heat transfer irreversibility, and improves the overall thermal performance. It is found also that for a low Rayleigh number, the largest porous layer thickness and the highest cavity orientation improve the thermal performance. On the contrary, at high Rayleigh numbers, these parameter ranges give the worst thermal performance.


Author(s):  
Saneshan Govender

In both pure fluids and porous media, the density gradient becomes unstable and fluid motion (convection) occurs when the critical Rayleigh number is exceeded. The classical stability analysis no longer applies if the Rayleigh number is time dependant, as found in systems where the density gradient is subjected to vibration. The influence of vibrations on thermal convection depends on the orientation of the time dependant acceleration with respect to the thermal stratification. The problem of a vibrating porous cylinder has numerous important engineering applications, the most important one being in the field of binary alloy solidification. In particular we may extend the above results to understanding the dynamics in the mushy layer (essentially a reactive porous medium) that is sandwiched between the underlying solid and overlying melt regions. Alloyed components are widely used in demanding and critical applications, such as turbine blades, and a consistent internal structure is paramount to the performance and integrity of the component. Alloys are susceptible to the formation of vertical channels which are a direct result of the presence convection, so any technique that suppresses convection/the formation of channels would be welcomed by the plant metallurgical engineer. In the current study, the linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogeneous cylindrical porous layer heated from below. The linear stability results show that increasing the frequency of vibration stabilizes the convection. In addition the aspect ratio of the porous cylinder is shown to influence the stability of convection for all frequencies analysed. It was also observed that only synchronous solutions are possible in cylindrical porous layers, with no transition to sub harmonic solutions as was the case in Govender (2005a) for rectangular layers or cavities. The results of the current analysis will be used in the formulation of a model for binary alloy systems that includes the reactive porous medium model.


Sign in / Sign up

Export Citation Format

Share Document