scholarly journals Combined Stereoscopic Particle Image Velocimetry Measurements in a Single Plane for an Impinging Jet around a Thin Control Rod

Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 430
Author(s):  
Marwan Alkheir ◽  
Hassan H. Assoum ◽  
Nour Eldin Afyouni ◽  
Kamel Abed Meraim ◽  
Anas Sakout ◽  
...  

Impinging jets are of high interest in many industrial applications and their flow dynamics has a complex three-dimensional behavior. These jets can result in a high noise generation leading to acoustic discomfort. Thus, a passive control mechanism which consists of introducing a thin rod in the flow of the jet is proposed in order to reduce the noise generation. The stereoscopic particle image velocimetry (SPIV) technique is employed to measure the three velocity components in a plane. An experimental difficulty is encountered to acquire images of the flow in the shadow of the rod which block a part of the field of interest. In this paper, an experimental arrangement is proposed in order to overcome this experimental difficulty using a combined SPIV technique denoted by (C-SPIV). This technique consists of using an inclined mirror to illuminate the area under the rod by reflecting the laser light and two independent systems of SPIV synchronized and correlated together in order to obtain the combined field of velocity in the same plane above and below the rod. The C-SPIV measurements allowed to obtain the kinematic field in the whole area of interest. Thus, vortex shedding frequency, Turbulent Kinetic Energy were calculated and analyzed along with the acoustic signal. These results are of high interest when seeking for noise reduction in such jet configuration.

Author(s):  
Marek Czapp ◽  
Matthias Utschick ◽  
Johannes Rutzmoser ◽  
Thomas Sattelmayer

Investigations on gas-liquid flows in horizontal pipes are of immanent importance for Reactor Safety Research. In case of a breakage of the main cooling circuit of a Pressurized Water Reactor (PWR), the pressure losses of the gas-liquid flow significantly govern the loss of coolant rate. The flow regime is largely determined by liquid and gas superficial velocities and contains slug flow that causes high-pressure pulsations to the infrastructure of the main cooling circuit. Experimental and numerical investigations on adiabatic slug flow of a water-air system were carried out in a horizontal pipe of about 10 m length and 54 mm diameter at atmospheric pressure and room temperature. Stereoscopic high-speed Particle Image Velocimetry in combination with Laser Induced Fluorescence was successfully applied on round pipe geometry to determine instantaneous three-dimensional water velocity fields of slug flows. After grid independence studies, numerical simulations were run with the open-source CFD program OpenFOAM. The solver uses the VOF method (Volume of Fluid) with phase-fraction interface capturing approach based on interface compression. It provides mesh refinement at the interfacial area to improve resolution of the interface between the two phases. Furthermore, standard k-ε turbulence model was applied in an unsteady Reynolds averaged Navier Stokes (URANS) model to resolve self-induced slug formation. The aim of this work is to present the feasibility of both relatively novel possibilities of determining two-phase slug flows in pipes. Experimental and numerical results allow the comparison of the slug initiation and expansion process with respect to their axial velocities and cross-sectional void fractions.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Silvio Chemnitz ◽  
Reinhard Niehuis

Abstract The development and verification of new turbulence models for Reynolds-averaged Navier–Stokes (RANS) equation-based numerical methods require reliable experimental data with a deep understanding of the underlying turbulence mechanisms. High accurate turbulence measurements are normally limited to simplified test cases under optimal experimental conditions. This work presents comprehensive three-dimensional data of turbulent flow quantities, comparing advanced constant temperature anemometry (CTA) and stereoscopic particle image velocimetry (PIV) methods under realistic test conditions. The experiments are conducted downstream of a linear, low-pressure turbine cascade at engine relevant high-speed operating conditions. The special combination of high subsonic Mach and low Reynolds number results in a low density test environment, challenging for all applied measurement techniques. Detailed discussions about influences affecting the measured result for each specific measuring technique are given. The presented time mean fields as well as total turbulence data demonstrate with an average deviation of ΔTu<0.4% and ΔC/Cref<0.9% an extraordinary good agreement between the results from the triple sensor hot-wire probe and the 2D3C-PIV setup. Most differences between PIV and CTA can be explained by the finite probe size and individual geometry.


Author(s):  
Jean-Pierre Rabbah ◽  
Neelakantan Saikrishnan ◽  
Ajit P. Yoganathan

Patient specific mitral valve computational models are being actively developed to facilitate surgical planning. These numerical models increasingly employ more realistic geometries, kinematics, and mechanical properties, which in turn requires rigorous experimental validation [1]. However, to date, native mitral flow dynamics have not been accurately and comprehensively characterized. In this study, we used Stereoscopic Particle Image Velocimetry (SPIV) to characterize the ventricular flow field proximal to a native mitral valve in a pulsatile experimental flow loop.


Sign in / Sign up

Export Citation Format

Share Document