scholarly journals Use of Yeast Mannoproteins by Oenococcus oeni during Malolactic Fermentation under Different Oenological Conditions

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1540
Author(s):  
Aitor Balmaseda ◽  
Laura Aniballi ◽  
Nicolas Rozès ◽  
Albert Bordons ◽  
Cristina Reguant

Oenococcus oeni is the main agent of malolactic fermentation in wine. This fermentation takes place after alcoholic fermentation, in a low nutrient medium where ethanol and other inhibitor compounds are present. In addition, some yeast-derived compounds such as mannoproteins can be stimulatory for O. oeni. The mannoprotein concentration in wine depends on the fermenting yeasts, and non-Saccharomyces in particular can increase it. As a result of the hydrolytic activity of O. oeni, these macromolecules can be degraded, and the released mannose can be taken up and used as an energy source by the bacterium. Here we look at mannoprotein consumption and the expression of four O. oeni genes related to mannose uptake (manA, manB, ptsI, and ptsH) in a wine-like medium supplemented with mannoproteins and in natural wines fermented with different yeasts. We observe a general gene upregulation in response to wine-like conditions and different consumption patterns in the studied media. O. oeni was able to consume mannoproteins in all the wines. This consumption was notably higher in natural wines, especially in T. delbrueckii and S. cerevisiae 3D wines, which presented the highest mannoprotein levels. Regardless of the general upregulation, it seems that mannoprotein degradation is more closely related to the fermenting medium.

OENO One ◽  
2021 ◽  
Vol 55 (2) ◽  
pp. 365-380
Author(s):  
Emma C. Snyder ◽  
Vladimir Jiranek ◽  
Ana Hranilovic

The yeast Lachancea thermotolerans can produce lactic acid during alcoholic fermentation (AF) and thereby acidify wines with insufficient acidity. However, little is known about the impact of L. thermotolerans on Oenococcus oeni, the primary lactic acid bacterium used in malolactic fermentation (MLF). This study explored the impact of sequential cultures of L. thermotolerans and Saccharomyces cerevisiae on MLF performance in white and red wines. Four L. thermotolerans strains were tested in Sauvignon blanc with sequential S. cerevisiae inoculation, compared to an S. cerevisiae control and the initially un-inoculated treatments. The L. thermotolerans wines showed large differences in acidification, and progression of MLF depended on lactic acid production, even at controlled pH. The highest and lowest lactic acid producing strains were tested further in Merlot fermentations with both co-inoculated and sequentially inoculated O. oeni. The low lactic acid producing strain enabled successful MLF, even when this failed in the S. cerevisiae treatment, with dramatically quicker malic acid depletion in O. oeni co-inoculation than in sequential inoculation. In contrast, a high lactic acid producing strain inhibited MLF irrespective of the O. oeni inoculation strategy. In a follow-up experiment, increasing concentrations of exogenously added lactic acid slowed MLF and reduced O. oeni growth across different matrices, with 6 g/L of lactic acid completely inhibiting MLF. The results confirm the inhibitory effect of lactic acid on O. oeni while highlighting the potential of some L. thermotolerans strains to promote MLF and the others to inhibit it.


Author(s):  
Jindřiška Kučerová ◽  
J. Široký

The aim of this contribution is to be able to describe the movement of organic acids in red wine during malolactic fermentation. Wines from Znojmo wine region were represented by varieties of Svatovavřinecké (Saint Laurent), Rulandské modré (Pinot Noir), Zweigeltrebe, Frankovka (Lemberger) and Dornfelder. The grapes went through the same way of wine making and after completion of alcoholic fermentation were inoculated with pure culture of lactic acid bacteria Oenococcus oeni. Samples were taken for chemical analysis during biodegradation of acids within the range of 2 to 4 days and they were measured using a device WineScan FT 120. Chemical analysis detected changes in the concentrations of the following parameters: total acidity, lactic, malic, tartaric and citric acids. The total content of acids statistically significantly (P = 0.05) differed only between samples of Svatovavřinecké T 66 and Zweigeltrebe T 2.The differences of average mass concentrations of lactic, malic and citric acids were not statistically relevant. Nevertheless, statistically relevant difference in the concentration of tartaric acid from all other wines was detected in a sample of SV T 66 which also reached the highest average value (5.18 g/l).


Author(s):  
Aitor Balmaseda ◽  
Alba Martín-García ◽  
Miguel Ángel Leal ◽  
Nicolas Rozès ◽  
Albert Bordons ◽  
...  

Recent research in non-Saccharomyces yeasts promotes their use as starter cultures in wine alcoholic fermentation together with S. cerevisiae. The use of these non-conventional yeasts can modulate the organoleptic profile of wines. However, it is unclear how they will modulate wines together with Oenococcus oeni after malolactic fermentation. In this article we discuss the main oenological consequences of these interactions and how malolactic fermentation can be stimulated using some of these non-Saccharomyces yeasts.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 802 ◽  
Author(s):  
Anthony Sereni ◽  
Quynh Phan ◽  
James Osborne ◽  
Elizabeth Tomasino

Malolactic fermentation (MLF) is an important process in wine production due to the resulting reduction in acidity. MLF is typically induced by the addition of Oenococcus oeni after the completion of alcoholic fermentation (AF), but can occur concurrent with AF by co-inoculation of O. oeni with Saccharomyces cerevisiae. This study investigated the effect of MLF inoculation timing and temperature (15 °C and 21 °C) and the presence of the non-Saccharomyces yeast Torulaspora delbrueckii on Chardonnay wine aroma and mouthfeel. Aroma composition was measured using headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GCMS). Mouthfeel attributes of the wines produced were assessed by a winemaker panel, using Napping® and Ultra-flash profiling. Significant differences in aroma composition and mouthfeel perception were found based on MLF timing and inoculation conditions, as well as between temperatures. Temperature had a greater impact on the aroma composition for sequential inoculations, while there were little differences based on the temperature of concurrent fermentations. Treatment type and temperature also affected the chemical composition of finished wines. Mouthfeel was impacted, although not as strongly as aroma composition. These findings demonstrate the usefulness of various MLF practices to influence the sensory qualities of a Chardonnay wine.


OENO One ◽  
2020 ◽  
Vol 54 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Alba Martín-García ◽  
Aitor Balmaseda ◽  
Albert Bordons ◽  
Cristina Reguant

Interest in some non-Saccharomyces yeasts has increased recently, because they have been associated with an improvement in wine quality. Nevertheless, little attention has been paid to the effect that the use of these yeasts may have on malolactic fermentation (MLF). In this study, the strains Torulaspora delbrueckii Biodiva and Metschnikowia pulcherrima Flavia were evaluated by co-inoculation and sequential fermentation with S. cerevisiae QA23. A fermentation with S. cerevisiae as a single starter was also performed as a control, then MLF was performed inoculating Oenococcus oeni PSU-1 in all wines. Finally, the wines obtained after alcoholic fermentation and MLF were characterised. The results of the coinoculated fermentations were similar to those of the S. cerevisiae control fermentations. Nevertheless, significant differences were observed in sequential fermentations in terms of lower content of acetic, L-malic and succinic acids. These differences were particularly noticeable in fermentations carried out with T. delbrueckii.


Author(s):  
Ionel POPESCU-MITROI ◽  
Marin GHEORGHIŢĂ ◽  
Felicia STOICA

During this experiment, the evolution of inner lactic bacteria microflora was monitored, during a spontaneous and conducted malolactic fermentation developed in the fall of the year 2006 at red wines obtained in Minis – Maderat wine yard. Thereby was monitored the bacterial population evolution, immediately after finishing the alcoholic fermentation (before developing the malolactic fermentation), through standard cultural method and through direct counting methods (counting with Thoma board and counting through Breed method). Results show that wines, at the end of alcoholic fermentation present bacterial loads between 102 and 104 cells/ml, after which in the exponential growing phase of the lactic bacteria registered at 5 days after sowing the selected malolactic bacteria, the bacterial density of wines to grow to 106 – 107 cells/ml, and at the end of malolactic fermentation, which matches the decline phase of lactic bacteria, the bacterial density of wines to get back to 105 cells/ml.


Author(s):  
Cristobal A. Onetto ◽  
Peter J. Costello ◽  
Radka Kolouchova ◽  
Charlotte Jordans ◽  
Jane McCarthy ◽  
...  

Malolactic fermentation is an indispensable step in the elaboration of most wines and is generally performed by Oenococcus oeni , a Gram-positive heterofermentative lactic acid bacterium species. While O. oeni is tolerant to many of the wine stresses, including low pH and high ethanol concentrations, it has high sensitivity to SO 2 , an antiseptic and antioxidant compound regularly used in winemaking.


Sign in / Sign up

Export Citation Format

Share Document