scholarly journals Interaction between Flavonoids and Carotenoids on Ameliorating Oxidative Stress and Cellular Uptake in Different Cells

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3096
Author(s):  
Xuan Chen ◽  
Zeyuan Deng ◽  
Liufeng Zheng ◽  
Bing Zhang ◽  
Ting Luo ◽  
...  

Flavonoids (quercetin, luteolin) and carotenoids (lycopene, lutein) were combined at different molecular ratios in a total concentration of 8 μM to investigate their antioxidant interactions. Cellular uptake of carotenoids, the expression of carotenoid transporters, the ROS scavenging ability, and antioxidant enzymes activities were compared in HUVEC, Caco-2, and L-02 cells. Combinations with flavonoids in the majority showed stronger antioxidant activity. Lycopene combined with quercetin at ratio 1:5 showed stronger ROS scavenging activities, increased 18, 12, and 12 Cellular antioxidant activity (CAA) units in HUVEC, Caco-2, and L-02 cells, respectively, and promoted SOD and CAT activities than individual component. The cell uptake of carotenoids was enhanced by flavonoids in antioxidant synergistic groups, while dampened by flavonoids in antagonistic groups in HUVEC cells. The synergistic group (lycopene:quercetin = 1:5) increased lycopene uptake by 271%, while antagonistic group (lutein:quercetin = 5:1) decreased lutein uptake by 17%. Flavonoids modulated the effects of carotenoids on the expression of active transporters scavenger receptor class B type I (SR-BI) or Niemann-Pick C1-like 1 (NPC1L1). The synergistic group (lycopene:quercetin = 1:5) increased the expression of SR-BI compared to individual lycopene treatment in HUVEC and Caco-2 cells. Thus, a diet rich in both flavonoids and lycopene possesses a great antioxidant activity, especially if a higher amount of flavonoids is included.

2011 ◽  
Vol 107 (9) ◽  
pp. 1296-1304 ◽  
Author(s):  
Emmanuelle Reboul ◽  
Zeina Soayfane ◽  
Aurélie Goncalves ◽  
Michela Cantiello ◽  
Romain Bott ◽  
...  

The intestinal absorption of cholesterol and lipid micronutrients such as vitamin E has been shown to share some common pathways. The present study aims to further compare the uptake of cholesterol ([3H]cholesterol v. 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3-ol (NBD-cholesterol)) and tocopherol in Caco-2 TC-7 cells and in mouse intestine, with special focus on the respective roles of scavenger receptor class B type I (SR-BI) and Niemann-Pick C1-like 1 (NPC1L1). Conversely to NBD-cholesterol, the uptakes of [3H]cholesterol and tocopherol by Caco-2 cells were impaired by both block lipid transport-1 and ezetimibe, which inhibit SR-BI and NPC1L1, respectively. These inhibitions occurred only when cholesterol or tocopherol was delivered to cells included in micelles that contained biliary acid and at least oleic acid as a lipid. In vivo, after 2 h of digestion in mice, the uptake of the two cholesterol analogues and of tocopherol all showed distinct patterns along the duodenum–jejunum axis. [3H]Cholesterol uptake, which correlated closely to NPC1L1 mRNA expression in wild-type (wt) mice, was strongly inhibited by ezetimibe. Intestinal SR-BI overexpression did not change NPC1L1 expression and led to a significant increase in [3H]cholesterol uptake in the distal jejunum. Conversely, neither ezetimibe treatment nor SR-BI overexpression had an effect on NBD-cholesterol uptake. However, in contrast with SR-BI mRNA expression, tocopherol absorption increased strongly up to the distal jejunum in wt mice where it was specifically inhibited by ezetimibe, and was increased in the proximal intestine of intestinal SR-BI-overexpressing mice. Thus, cholesterol and tocopherol uptakes share common pathways in cell culture models, but display different in vivo absorption patterns associated with distinct contributions of SR-BI and NPC1L1.


2020 ◽  
Vol 64 (15) ◽  
pp. 1901213
Author(s):  
Shirley Tenesaca ◽  
Marcos Vasquez ◽  
Myriam Fernandez‐Sendin ◽  
Claudia Augusta Di Trani ◽  
Nuria Ardaiz ◽  
...  

2008 ◽  
Vol 138 (8) ◽  
pp. 1432-1436 ◽  
Author(s):  
Myriam Moussa ◽  
Jean-François Landrier ◽  
Emmanuelle Reboul ◽  
Odette Ghiringhelli ◽  
Christine Coméra ◽  
...  

2000 ◽  
Vol 41 (11) ◽  
pp. 1849-1857 ◽  
Author(s):  
Frederick C. de Beer ◽  
Patrice M. Connell ◽  
J. Yu ◽  
Maria C. de Beer ◽  
Nancy R. Webb ◽  
...  

2010 ◽  
Vol 11 (2) ◽  
pp. 126
Author(s):  
K. Duwensee ◽  
I. Tancevski ◽  
E. Demetz ◽  
P. Eller ◽  
C. Heim ◽  
...  

Endocrinology ◽  
2010 ◽  
Vol 151 (7) ◽  
pp. 3214-3224 ◽  
Author(s):  
Sofia Mavridou ◽  
Maria Venihaki ◽  
Olga Rassouli ◽  
Christos Tsatsanis ◽  
Dimitris Kardassis

Scavenger receptor class B type I (SR-BI) facilitates the reverse transport of excess cholesterol from peripheral tissues to the liver via high-density lipoproteins. In steroidogenic tissues, SR-BI supplies cholesterol for steroid hormone production. We show here that the transcription of the human SR-BI gene is subject to feedback inhibition by glucocorticoid in adrenal and ovarian cells. SR-BI mRNA levels were increased in adrenals from corticosterone-insufficient Crh−/− mice, whereas corticosterone replacement by oral administration inhibited SR-BI gene expression in these mice. SR-BI mRNA levels were increased in adrenals from wild-type mice treated with metyrapone, a drug that blocks corticosterone synthesis. Experiments in adrenocortical H295R and ovarian SKOV-3 cells using cycloheximide and siRNA-mediated gene silencing revealed that glucocorticoid-mediated inhibition of SR-BI gene transcription requires de novo protein synthesis and the glucocorticoid receptor (GR). No direct binding of GR to the SR-BI promoter could be demonstrated in vitro and in vivo, suggesting an indirect mechanism of repression of SR-BI gene transcription by GR in adrenal cells. Deletion analysis established that the region of the human SR-BI promoter between nucleotides −201 and −62 is sufficient to mediate repression by glucocorticoid. This region contains putative binding sites for transcriptional repressors that could play a role in SR-BI gene regulation in response to glucocorticoid. In summary, this is the first report showing that glucocorticoid suppress SR-BI expression suggesting that steroidogenic tissues maintain steroid hormone homeostasis by prohibiting SR-BI-mediated high-density lipoprotein cholesterol uptake when the endogenous levels of glucocorticoid are elevated.


2010 ◽  
Vol 38 (06) ◽  
pp. 1161-1169 ◽  
Author(s):  
Siming Guan ◽  
Bin Wang ◽  
Wei Li ◽  
Jinghuan Guan ◽  
Xin Fang

This study investigates the effects of beriberine on the expression of lectin-like ox-LDL receptor-1 (LOX-1), scavenger receptor A (SR-A), SR class B type I (SR-BI) and ATP-binding cassette transporter A1 (ABCA1) in human macrophage-derived foam cells induced by ox-LDL. Different concentrations of Berberine were co-cultured with THP-1 derived foam cells. The mRNA and protein expressions of LOX-1, SR-A, SR-BI and ABCA1 were determined by RT-PCR and Western blot analysis, respectively. Ox-LDL significantly increased the expression of LOX-1 and inhibited the expression of SR-BI in a dose- and time-dependent manner. Berberine significantly inhibited the effects of ox-LDL in a dose- and time-dependent manner. Moreover, ox-LDL significantly promoted ABCA1 expression. However, berberine had no effect on SR-A or ABCA1 expression. Berberine can inhibit the expression of LOX-1 and promote the expression of SR-BI in macrophage-derived foam cells. Therefore, berberine could be used to treat atherosclerotic diseases.


Sign in / Sign up

Export Citation Format

Share Document