scholarly journals Assessment of the Miniature Kramer Shear Cell to Measure Both Solid Food and Bolus Mechanical Properties and Their Interplay with Oral Processing Behavior

Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 613
Author(s):  
María Dolores Álvarez ◽  
Jaime Paniagua ◽  
Beatriz Herranz

This study assessed the usefulness of the miniature Kramer shear cell to determine relevant instrumental parameters of solid foods and bolus counterparts, examining their relationships with oral processing behaviors to obtain greater knowledge about the texture perception process. Six solid foods with different textural properties were tested. Bolus mechanical properties were also determined by means of cone penetration tests and rheological measurements, and their particle size distributions by sieving. Oral processing behavior (chewing time, number of chews, chewing rate, eating rate) and food saliva uptake (SU) of a young volunteer and a panel of 39 untrained participants were analyzed. The Kramer mechanical properties were very suitable for detecting different levels of food and bolus textural hardness and fracturability and the associated degrees of fragmentation achieved during mastication. Chewing time and number of chews were highly correlated with Kramer food and bolus mechanical properties for the single subject and for the panel’s oral processing behaviors. For the single subject, SU and eating rate also showed strong correlations with food and bolus mechanical properties, unlike chewing rate and food moisture content (FMC). In contrast, eating rate, FMC, and SU did not vary with the oral activities of the panel.

2018 ◽  
Vol 9 (10) ◽  
pp. 5301-5312 ◽  
Author(s):  
May Sui Mei Wee ◽  
Ai Ting Goh ◽  
Markus Stieger ◽  
Ciarán G. Forde

The correlation between instrumental texture properties and oral processing provides guidance on the parameters that produce ‘faster’ and ‘slower’ versions of foods, and suggests how texture modifications can be applied to moderate eating rate and energy intake within meals.


2012 ◽  
Vol 45 ◽  
pp. 74-82 ◽  
Author(s):  
Mohammad Hassan Baziar ◽  
Armin Kashkooli ◽  
Alireza Saeedi-Azizkandi

2020 ◽  
Vol 205 ◽  
pp. 04005
Author(s):  
Philip J. Vardon ◽  
Joek Peuchen

A method of utilizing cone penetration tests (CPTs) is presented which gives continuous profiles of both the in situ thermal conductivity and volumetric heat capacity, along with the in situ temperature, for the upper tens of meters of the ground. Correlations from standard CPT results (cone resistance, sleeve friction and pore pressure) are utilized for both thermal conductivity and volumetric heat capacity for saturated soil. These, in conjunction with point-wise thermal conductivity and in situ temperature results using a Thermal CPT (T-CPT), allow accurate continuous profiles to be derived. The CPT-based method is shown via a field investigation supported by laboratory tests to give accurate and robust results.


Nutrients ◽  
2017 ◽  
Vol 9 (8) ◽  
pp. 891 ◽  
Author(s):  
Keri McCrickerd ◽  
Ciaran Forde

2007 ◽  
Vol 21 (3) ◽  
pp. 397-401 ◽  
Author(s):  
J.F. Prinz ◽  
A.M. Janssen ◽  
R.A. de Wijk

2020 ◽  
Vol 23 (3-4) ◽  
Author(s):  
Jef DECKERS ◽  
Stephen LOUWYE

An east-west correlation profile through the upper Neogene succession north of Antwerp, based on cone penetration tests, reveals the architecture of the lower Pliocene Kattendijk Formation. It shows a basal incision of the Kattendijk Formation down to 20 m in Miocene sands and locally even Lower Oligocene clays. The incision is part of a much larger gully system in the region at the base of the Kattendijk Formation. The strongest gully incision is observed along the western profile, and coincides with increases in the thickness of the Kattendijk Formation from its typical four to six meters thickness in the east towards a maximum of 15 m in the west. Correlations show that this additional thickness represents a separate sequence of the Kattendijk Formation that first filled the deepest part of the gully prior to being transgressed and covered by the second sequence deposited in a larger gully system. Both sequences of the Kattendijk Formation have basal transgressive layers, and are lithologically identical. Initial, deep incision at the base of the Kattendijk Formation might have been the result of the constriction of early Pliocene tidal currents that invaded and expanded fluvial or estuarine gullies that had developed during the latest Miocene sea-level low. A similar mechanism had been proposed for the development of late Miocene gully system at the base of the Diest Formation further southeast in northern Belgium. As the wider area was transgressed and covered by the second sequence of the Kattendijk Formation, flow constriction ended, currents weakened and gully incisions were reduced in size.


Sign in / Sign up

Export Citation Format

Share Document