scholarly journals A Modified Leslie–Gower Model Incorporating Beddington–DeAngelis Functional Response, Double Allee Effect and Memory Effect

2021 ◽  
Vol 5 (3) ◽  
pp. 84
Author(s):  
Emli Rahmi ◽  
Isnani Darti ◽  
Agus Suryanto ◽  
Trisilowati

In this paper, a modified Leslie–Gower predator-prey model with Beddington–DeAngelis functional response and double Allee effect in the growth rate of a predator population is proposed. In order to consider memory effect on the proposed model, we employ the Caputo fractional-order derivative. We investigate the dynamic behaviors of the proposed model for both strong and weak Allee effect cases. The existence, uniqueness, non-negativity, and boundedness of the solution are discussed. Then, we determine the existing condition and local stability analysis of all possible equilibrium points. Necessary conditions for the existence of the Hopf bifurcation driven by the order of the fractional derivative are also determined analytically. Furthermore, by choosing a suitable Lyapunov function, we derive the sufficient conditions to ensure the global asymptotic stability for the predator extinction point for the strong Allee effect case as well as for the prey extinction point and the interior point for the weak Allee effect case. Finally, numerical simulations are shown to confirm the theoretical results and can explore more dynamical behaviors of the system, such as the bi-stability and forward bifurcation.

2020 ◽  
Vol 1 (1) ◽  
pp. 16-24
Author(s):  
Hasan S. Panigoro ◽  
Dian Savitri

This article aims to study the dynamics of a Lotka-Volterra predator-prey model with Allee effect in predator. According to the biological condition, the Caputo fractional-order derivative is chosen as its operator. The analysis is started by identifying the existence, uniqueness, and non-negativity of the solution. Furthermore, the existence of equilibrium points and their stability is investigated. It has shown that the model has two equilibrium points namely both populations extinction point which is always a saddle point, and a conditionally stable co-existence point, both locally and globally. One of the interesting phenomena is the occurrence of Hopf bifurcation driven by the order of derivative. Finally, the numerical simulations are given to validate previous theoretical results.


2020 ◽  
Vol 18 (1) ◽  
pp. 458-475
Author(s):  
Na Zhang ◽  
Yonggui Kao ◽  
Fengde Chen ◽  
Binfeng Xie ◽  
Shiyu Li

Abstract A predator-prey model interaction under fluctuating water level with non-selective harvesting is proposed and studied in this paper. Sufficient conditions for the permanence of two populations and the extinction of predator population are provided. The non-negative equilibrium points are given, and their stability is studied by using the Jacobian matrix. By constructing a suitable Lyapunov function, sufficient conditions that ensure the global stability of the positive equilibrium are obtained. The bionomic equilibrium and the optimal harvesting policy are also presented. Numerical simulations are carried out to show the feasibility of the main results.


Author(s):  
Agus Suryanto ◽  
Isnani Darti ◽  
Hasan S. Panigoro ◽  
Adem Kilicman

We consider a model of predator-prey interaction at fractional-order where the predation obeys the ratio-dependent functional response and the prey is linearly harvested. For the proposed model, we show the existence, uniqueness, non-negativity as well as the boundedness of the solutions. Conditions for the existence of all possible equilibrium points and their stability criteria, both locally and globally, are also investigated. The local stability conditions are derived using the Magtinon's theorem, while the global stability is proven by formulating an appropriate Lyapunov function. The occurance of Hopf bifurcation around the interior point is also shown analytically. At the end, we implement the Predictor-Corrector scheme to perform some numerical simulations.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1100 ◽  
Author(s):  
Agus Suryanto ◽  
Isnani Darti ◽  
Hasan S. Panigoro ◽  
Adem Kilicman

We consider a model of predator–prey interaction at fractional-order where the predation obeys the ratio-dependent functional response and the prey is linearly harvested. For the proposed model, we show the existence, uniqueness, non-negativity and boundedness of the solutions. Conditions for the existence of all possible equilibrium points and their stability criteria, both locally and globally, are also investigated. The local stability conditions are derived using the Magtinon’s theorem, while the global stability is proven by formulating an appropriate Lyapunov function. The occurrence of Hopf bifurcation around the interior point is also shown analytically. At the end, we implemented the Predictor–Corrector scheme to perform some numerical simulations.


2021 ◽  
pp. 1-28
Author(s):  
ANURAJ SINGH ◽  
PREETI DEOLIA

In this paper, we study a discrete-time predator–prey model with Holling type-III functional response and harvesting in both species. A detailed bifurcation analysis, depending on some parameter, reveals a rich bifurcation structure, including transcritical bifurcation, flip bifurcation and Neimark–Sacker bifurcation. However, some sufficient conditions to guarantee the global asymptotic stability of the trivial fixed point and unique positive fixed points are also given. The existence of chaos in the sense of Li–Yorke has been established for the discrete system. The extensive numerical simulations are given to support the analytical findings. The system exhibits flip bifurcation and Neimark–Sacker bifurcation followed by wide range of dense chaos. Further, the chaos occurred in the system can be controlled by choosing suitable value of prey harvesting.


Author(s):  
V. Madhusudanan ◽  
S. Vijaya

In this work, the dynamical behavior of the system with two preys and one predator population is investigated. The predator exhibits a Holling type II response to one prey which is harvested and a Beddington-DeAngelis functional response to the other prey. The boundedness of the system is analyzed. We examine the occurrence of positive equilibrium points and stability of the system at those points. At trivial equilibrium E0and axial equilibrium (E1); the system is found to be unstable. Also we obtain the necessary and sufficient conditions for existence of interior equilibrium point (E6) and local and global stability of the system at the interior equilibrium (E6): Depending upon the existence of limit cycle, the persistence condition is established for the system. The numerical simulation infer that varying the parameters such as e and λ1it is possible to change the dynamical behavior of the system from limit cycle to stable spiral. It is also observed that the harvesting rate plays a crucial role in stabilizing the system.


2017 ◽  
Vol 10 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Wensheng Yang

The dynamical behaviors of a diffusive predator–prey model with Beddington–DeAngelis functional response and disease in the prey is considered in this work. By applying the comparison principle, linearized method, Lyapunov function and iterative method, we are able to achieve sufficient conditions of the permanence, the local stability and global stability of the boundary equilibria and the positive equilibrium, respectively. Our result complements and supplements some known ones.


Author(s):  
Jia Liu

In this study, we consider a diffusive predator–prey model with multiple Allee effects induced by fear factors. We investigate the existence, boundedness and permanence of the solution of the system. We also discuss the existence and non-existence of non-constant solutions. We derive sufficient conditions for spatially homogeneous (non-homogenous) Hopf bifurcation and steady state bifurcation. Theoretical and numerical simulations show that strong Allee effect and fear effect have great effect on the dynamics of system.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
P. K. Santra ◽  
G. S. Mahapatra ◽  
G. R. Phaijoo

The paper investigates the dynamical behaviors of a two-species discrete predator-prey system with Crowley–Martin functional response incorporating prey refuge proportional to prey density. The existence of equilibrium points, stability of three fixed points, period-doubling bifurcation, Neimark–Sacker bifurcation, Marottos chaos, and Control Chaos are analyzed for the discrete-time domain. The time graphs, phase portraits, and bifurcation diagrams are obtained for different parameters of the model. Numerical simulations and graphics show that the discrete model exhibits rich dynamics, which also present that the system is a chaotic and complex one. This paper attempts to present a feedback control method which can stabilize chaotic orbits at an unstable equilibrium point.


Sign in / Sign up

Export Citation Format

Share Document