scholarly journals Dynamical Behaviour in Two Prey-Predator System with Persistence

Author(s):  
V. Madhusudanan ◽  
S. Vijaya

In this work, the dynamical behavior of the system with two preys and one predator population is investigated. The predator exhibits a Holling type II response to one prey which is harvested and a Beddington-DeAngelis functional response to the other prey. The boundedness of the system is analyzed. We examine the occurrence of positive equilibrium points and stability of the system at those points. At trivial equilibrium E0and axial equilibrium (E1); the system is found to be unstable. Also we obtain the necessary and sufficient conditions for existence of interior equilibrium point (E6) and local and global stability of the system at the interior equilibrium (E6): Depending upon the existence of limit cycle, the persistence condition is established for the system. The numerical simulation infer that varying the parameters such as e and λ1it is possible to change the dynamical behavior of the system from limit cycle to stable spiral. It is also observed that the harvesting rate plays a crucial role in stabilizing the system.

2020 ◽  
Vol 18 (1) ◽  
pp. 458-475
Author(s):  
Na Zhang ◽  
Yonggui Kao ◽  
Fengde Chen ◽  
Binfeng Xie ◽  
Shiyu Li

Abstract A predator-prey model interaction under fluctuating water level with non-selective harvesting is proposed and studied in this paper. Sufficient conditions for the permanence of two populations and the extinction of predator population are provided. The non-negative equilibrium points are given, and their stability is studied by using the Jacobian matrix. By constructing a suitable Lyapunov function, sufficient conditions that ensure the global stability of the positive equilibrium are obtained. The bionomic equilibrium and the optimal harvesting policy are also presented. Numerical simulations are carried out to show the feasibility of the main results.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 865
Author(s):  
Jialin Chen ◽  
Xiaqing He ◽  
Fengde Chen

A discrete-time predator–prey system incorporating fear effect of the prey with the predator has other food resource is proposed in this paper. The trivial equilibrium and the predator free equilibrium are both unstable. A set of sufficient conditions for the global attractivity of prey free equilibrium and interior equilibrium are established by using iteration scheme and the comparison principle of difference equations. Our study shows that due to the fear of predation, the prey species will be driven to extinction while the predator species tends to be stable since it has other food resource, i.e., the prey free equilibrium may be globally stable under some suitable conditions. Numeric simulations are provided to illustrate the feasibility of the main results.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Lazarus Kalvein Beay ◽  
Maryone Saija

We proposed and analyzed a stage-structure Rosenzweig-MacArthur model incorporating a prey refuge.  It is assumed that the prey is a stage-structure population consisting of two compartments known as immature prey and mature prey. The model incorporates the functional response Holling type-II. In this work, we investigate all the biologically feasible equilibrium points, and it is shown that the system has three equilibrium points. Sufficient conditions for the local stability of the non-negative equilibrium point of the model are also derived. All points are conditionally locally asymptotically stable. By constructing Jacobian matrix and determined eigenvalues, we analyzed the local stability of the trivial equilibrium and non-predator equilibrium points. Specifically for coexistence equilibrium point, Routh-Hurwitz criterion used to analyze local stability. In addtion, we investigated the effect of immature prey refuge. Our mathematical analysis exhibits that immature prey refuge have played a crucial role in the behavioral system. When the effect of immature prey refuge (constant m) increases, it is can stabilize non-predator equilibrium point, where all the species can not exists together. And conversely, if contant m decreases, it is can stabilize coexistence equilibrium point then all the species can exists together. The work is completed with a numerical simulation to confirmed analitical results


2015 ◽  
Vol 25 (06) ◽  
pp. 1550080 ◽  
Author(s):  
Chaoxiong Du ◽  
Yirong Liu ◽  
Qi Zhang

Limit cycle bifurcation problem of Kolmogorov model is interesting and significant both in theory and applications. In this paper, we will focus on investigating limit cycles for a class of quartic Kolmogorov model with three positive equilibrium points. Perturbed model can bifurcate three small limit cycles near (1, 2) or (2, 1) under a certain condition and can bifurcate one limit cycle near (1, 1). In addition, we have given some examples of simultaneous Hopf bifurcation and the structure of limit cycles bifurcated from three positive equilibrium points. The limit cycle bifurcation problem for Kolmogorov model with several positive equilibrium points are less seen in published references. Our result is good and interesting.


2020 ◽  
Vol 30 (16) ◽  
pp. 2050239
Author(s):  
Udai Kumar ◽  
Partha Sarathi Mandal

Many important factors in ecological communities are related to the interplay between predation and competition. Intraguild predation or IGP is a mixture of predation and competition which is a very basic three-dimensional system in food webs where two species are related to predator–prey relationship and are also competing for a shared prey. On the other hand, Allee effect is also a very important ecological factor which causes significant changes to the system dynamics. In this work, we consider a intraguild predation model in which predator is specialist, the growth of shared prey population is subjected to additive Allee effect and there is Holling-Type III functional response between IG prey and IG predator. We analyze the impact of Allee effect on the global dynamics of the system with the prior knowledge of the dynamics of the model without Allee effect. Our theoretical and numerical analyses suggest that: (1) Trivial equilibrium point is always locally asymptotically stable and it may be globally stable also. Hence, all the populations may go to extinction depending upon initial conditions; (2) Bistability is observed between unique interior equilibrium point and trivial equilibrium point or between boundary equilibrium point and trivial equilibrium point; (3) Multiple interior equilibrium points exist under certain parameters range. We also provide here a comprehensive study of bifurcation analysis by considering Allee effect as one of the bifurcation parameters. We observed that Allee effect can generate all possible bifurcations such as transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation, Bogdanov–Taken bifurcation and Bautin bifurcation. Finally, we compared our model with the IGP model without Allee effect for better understanding the impact of Allee effect on the system dynamics.


2015 ◽  
Vol 25 (10) ◽  
pp. 1550135 ◽  
Author(s):  
Yanqin Xiong ◽  
Maoan Han ◽  
Yong Wang

In this paper, we first classify all centers of a class of quasi-homogeneous polynomial differential systems of degree 5. Then we extend this kind of systems to a generalized polynomial differential system and provide the necessary and sufficient conditions to have a center at the origin. Furthermore, we study the Poincaré bifurcation for its perturbed system as it has a center at the origin, find the Poincaré cyclicity up to first order of ε.


2010 ◽  
Vol 18 (02) ◽  
pp. 399-435 ◽  
Author(s):  
KRISHNA PADA DAS ◽  
SAMRAT CHATTERJEE ◽  
J. CHATTOPADHYAY

Eco-epidemiological models are now receiving much attention to the researchers. In the present article we re-visit the model of Holling-Tanner which is recently modified by Haque and Venturino1 with the introduction of disease in prey population. Density dependent disease-induced predator mortality function is an important consideration of such systems. We extend the model of Haque and Venturino1 with density dependent disease-induced predator mortality function. The existence and local stability of the equilibrium points and the conditions for the permanence and impermanence of the system are worked out. The system shows different dynamical behaviour including chaos for different values of the rate of infection. The model considered by Haque and Venturino1 also exhibits chaotic nature but they did not shed any light in this direction. Our analysis reveals that by controlling disease-induced mortality of predator due to ingested infected prey may prevent the occurrence of chaos.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-38
Author(s):  
Sudeshna Mondal ◽  
G. P. Samanta ◽  
Juan J. Nieto

In this work, our aim is to investigate the impact of a non-Kolmogorov predator-prey-subsidy model incorporating nonlinear prey refuge and the effect of fear with Holling type II functional response. The model arises from the study of a biological system involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). The positivity and asymptotically uniform boundedness of the solutions of the system have been derived. Analytically, we have studied the criteria for the feasibility and stability of different equilibrium points. In addition, we have derived sufficient conditions for the existence of local bifurcations of codimension 1 (transcritical and Hopf bifurcation). It is also observed that there is some time lag between the time of perceiving predator signals through vocal cues and the reduction of prey’s birth rate. So, we have analyzed the dynamical behaviour of the delayed predator-prey-subsidy model. Numerical computations have been performed using MATLAB to validate all the analytical findings. Numerically, it has been observed that the predator, prey, and subsidy can always exist at a nonzero subsidy input rate. But, at a high subsidy input rate, the prey population cannot persist and the predator population has a huge growth due to the availability of food sources.


2021 ◽  
Vol 47 (2) ◽  
pp. 728-737
Author(s):  
Alanus Mapunda ◽  
Thadei Sagamiko

In this paper, a predator-prey relationship in the presence of prey refuge was studied. The analysis of the dependence of locally stable equilibrium points on the parameters of the problem was carried out. Bifurcation and limit cycles for the model were analyzed to show the dynamical behaviour of the system. The results showed that the system is stable at a constant prey refuge m = 0.3 and prey harvesting rate H = 0.3. However, increasing m and decreasing H or vice versa, the predator-prey system remains stable. It was further observed that for a constant prey refuge m ≥ 0.78, the predator population undergoes extinction. Therefore, m was found to be a bifurcation parameter and m = 0.78 is a bifurcation value. Keywords: Prey refuge, bifurcation, harvesting, intraspecific competition, phase portrait


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sudeshna Mondal ◽  
Guruprasad Samanta

AbstractA field experiment on terrestrial vertebrates observes that direct predation on predator–prey interaction can not only affect the population dynamics but the indirect effect of predator’s fear (felt by prey) through chemical and/or vocal cues may also reduce the reproduction of prey and change their life history. In this work, we have described a predator–prey model with Holling type II functional response incorporating prey refuge. Irrespective of being considering either a constant number of prey being refuged or a proportion of the prey population being refuged, a different growth rate and different carrying capacity for the prey population in the refuge area are considered. The total prey population is divided into two subclasses: (i) prey x in the refuge area and (ii) prey y in the predatory area. We have taken the migration of the prey population from refuge area to predatory area. Also, we have considered a benefit from the antipredation response of the prey population y in presence of cost of fear. Feasible equilibrium points of the proposed system are derived, and the dynamical behavior of the system around equilibria is investigated. Birth rate of prey in predatory region has been regarded as bifurcation parameter to examine the occurrence of Hopf bifurcation in the neighborhood of the interior equilibrium point. Moreover, the conditions for occurrence of transcritical bifurcations have been determined. Further, we have incorporated discrete-type gestational delay on the system to make it more realistic. The dynamical behavior of the delayed system is analyzed. Finally, some numerical simulations are given to verify the analytical results.


Sign in / Sign up

Export Citation Format

Share Document