scholarly journals Some Dynamical Models Involving Fractional-Order Derivatives with the Mittag-Leffler Type Kernels and Their Applications Based upon the Legendre Spectral Collocation Method

2021 ◽  
Vol 5 (3) ◽  
pp. 131
Author(s):  
Hari M. Srivastava ◽  
Abedel-Karrem N. Alomari ◽  
Khaled M. Saad ◽  
Waleed M. Hamanah

Fractional derivative models involving generalized Mittag-Leffler kernels and opposing models are investigated. We first replace the classical derivative with the GMLK in order to obtain the new fractional-order models (GMLK) with the three parameters that are investigated. We utilize a spectral collocation method based on Legendre’s polynomials for evaluating the numerical solutions of the pr. We then construct a scheme for the fractional-order models by using the spectral method involving the Legendre polynomials. In the first model, we directly obtain a set of nonlinear algebraic equations, which can be approximated by the Newton-Raphson method. For the second model, we also need to use the finite differences method to obtain the set of nonlinear algebraic equations, which are also approximated as in the first model. The accuracy of the results is verified in the first model by comparing it with our analytical solution. In the second and third models, the residual error functions are calculated. In all cases, the results are found to be in agreement. The method is a powerful hybrid technique of numerical and analytical approach that is applicable for partial differential equations with multi-order of fractional derivatives involving GMLK with three parameters.

2016 ◽  
Vol 09 (02) ◽  
pp. 1650031 ◽  
Author(s):  
Şuayip Yüzbaşı

In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kolade M. Owolabi

Abstract In this work, synchronization of fractional dynamics of chaotic system is presented. The suggested dynamics is governed by a system of fractional differential equations, where the fractional derivative operator is modeled by the novel Caputo operator. The nature of fractional dynamical system is non-local which often rules out a closed-form solution. As a result, an efficient numerical method based on shifted Chebychev spectral collocation method is proposed. The error and convergence analysis of this scheme is also given. Numerical results are given for different values of fractional order and other parameters when applied to solve chaotic system, to address any points or queries that may occur naturally.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 554-562
Author(s):  
Hillary Muzara ◽  
Stanford Shateyi ◽  
Gerald Tendayi Marewo

AbstractIn this paper, a bivariate spectral quasi-linearization method is used to solve the highly non-linear two dimensional Bratu problem. The two dimensional Bratu problem is also solved using the Chebyshev spectral collocation method which uses Kronecker tensor products. The bivariate spectral quasi-linearization method and Chebyshev spectral collocation method solutions converge to the lower branch solution. The results obtained using the bivariate spectral quasi-linearization method were compared with results from finite differences method, the weighted residual method and the homotopy analysis method in literature. Tables and graphs generated to present the results obtained show a close agreement with known results from literature.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
W. M. Abd-Elhameed ◽  
E. H. Doha ◽  
Y. H. Youssri

This paper is concerned with introducing two wavelets collocation algorithms for solving linear and nonlinear multipoint boundary value problems. The principal idea for obtaining spectral numerical solutions for such equations is employing third- and fourth-kind Chebyshev wavelets along with the spectral collocation method to transform the differential equation with its boundary conditions to a system of linear or nonlinear algebraic equations in the unknown expansion coefficients which can be efficiently solved. Convergence analysis and some specific numerical examples are discussed to demonstrate the validity and applicability of the proposed algorithms. The obtained numerical results are comparing favorably with the analytical known solutions.


Sign in / Sign up

Export Citation Format

Share Document