scholarly journals Hilfer–Hadamard Fractional Boundary Value Problems with Nonlocal Mixed Boundary Conditions

2021 ◽  
Vol 5 (4) ◽  
pp. 195
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

This paper is concerned with the existence and uniqueness of solutions for a Hilfer–Hadamard fractional differential equation, supplemented with mixed nonlocal (multi-point, fractional integral multi-order and fractional derivative multi-order) boundary conditions. The existence of a unique solution is obtained via Banach contraction mapping principle, while the existence results are established by applying the fixed point theorems due to Krasnoselskiĭ and Schaefer and Leray–Schauder nonlinear alternatives. We demonstrate the application of the main results by presenting numerical examples. We also derive the existence results for the cases of convex and non-convex multifunctions involved in the multi-valued analogue of the problem at hand.

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 174
Author(s):  
Chanakarn Kiataramkul ◽  
Weera Yukunthorn ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In this paper, we initiate the study of existence of solutions for a fractional differential system which contains mixed Riemann–Liouville and Hadamard–Caputo fractional derivatives, complemented with nonlocal coupled fractional integral boundary conditions. We derive necessary conditions for the existence and uniqueness of solutions of the considered system, by using standard fixed point theorems, such as Banach contraction mapping principle and Leray–Schauder alternative. Numerical examples illustrating the obtained results are also presented.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040006 ◽  
Author(s):  
AMITA DEVI ◽  
ANOOP KUMAR ◽  
THABET ABDELJAWAD ◽  
AZIZ KHAN

In this paper, we deal with the existence and uniqueness (EU) of solutions for nonlinear Langevin fractional differential equations (FDE) having fractional derivative of different orders with nonlocal integral and anti-periodic-type boundary conditions. Also, we investigate the Hyres–Ulam (HU) stability of solutions. The existence result is derived by applying Krasnoselskii’s fixed point theorem and the uniqueness of result is established by applying Banach contraction mapping principle. An example is offered to ensure the validity of our obtained results.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Warissara Saengthong ◽  
Ekkarath Thailert ◽  
Sotiris K. Ntouyas

AbstractIn this paper, we study existence and uniqueness of solutions for a system of Hilfer–Hadamard sequential fractional differential equations via standard fixed point theorems. The existence is proved by using the Leray–Schauder alternative, while the existence and uniqueness by the Banach contraction mapping principle. Illustrative examples are also discussed.


2021 ◽  
Vol 11 (11) ◽  
pp. 4798
Author(s):  
Hari Mohan Srivastava ◽  
Sotiris K. Ntouyas ◽  
Mona Alsulami ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

The main object of this paper is to investigate the existence of solutions for a self-adjoint coupled system of nonlinear second-order ordinary differential equations equipped with nonlocal multi-point coupled boundary conditions on an arbitrary domain. We apply the Leray–Schauder alternative, the Schauder fixed point theorem and the Banach contraction mapping principle in order to derive the main results, which are then well-illustrated with the aid of several examples. Some potential directions for related further researches are also indicated.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Chanon Promsakon ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

This paper is concerned with the existence and uniqueness of solutions for a new class of boundary value problems, consisting by Hilfer-Hadamard fractional differential equations, supplemented with nonlocal integro-multipoint boundary conditions. The existence of a unique solution is obtained via Banach contraction mapping principle, while the existence results are established by applying Schaefer and Krasnoselskii fixed point theorems as well as Leray-Schauder nonlinear alternative. Examples illustrating the main results are also constructed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hüseyin Aktuğlu ◽  
Mehmet Ali Özarslan

We consider the model of a Caputo -fractional boundary value problem involving -Laplacian operator. By using the Banach contraction mapping principle, we prove that, under some conditions, the suggested model of the Caputo -fractional boundary value problem involving -Laplacian operator has a unique solution for both cases of and . It is interesting that in both cases solvability conditions obtained here depend on , , and the order of the Caputo -fractional differential equation. Finally, we illustrate our results with some examples.


Author(s):  
Jehad Alzabut ◽  
A. George Maria Selvam ◽  
Dhakshinamoorthy Vignesh ◽  
Yousef Gholami

Abstract In this paper, we study a type of nonlinear hybrid Δ-difference equations of fractional-order. The main objective is to establish some stability criteria including the Ulam–Hyers stability, generalized Ulam–Hyers stability together with the Mittag-Leffler–Ulam–Hyers stability for the addressed problem. Prior to the stabilization processes, solvability criteria for the existence and uniqueness of solutions are considered. For this purpose, a hybrid fixed point theorem for triple operators and the Banach contraction mapping principle are applied, respectively. For the sake of illustrating the practical impact of the proposed theoretical criteria, we finish the paper with particular examples.


1991 ◽  
Vol 4 (2) ◽  
pp. 161-164 ◽  
Author(s):  
Jaroslaw Kwapisz

A new simple proof of existence and uniqueness of solutions of the Volterra integral equation in Lebesque spaces is given. It is shown that the weighted norm technique and the Banach contraction mapping principle can be applied (as in the case of continuous functions space).


Sign in / Sign up

Export Citation Format

Share Document