scholarly journals Exploring the Pharmacological Potential of Glycyrrhizic Acid: From Therapeutic Applications to Trends in Nanomedicine

2022 ◽  
Vol 2 (1) ◽  
pp. 1-15
Author(s):  
Mônica Helena Monteiro do Nascimento ◽  
Daniele Ribeiro de Araújo

Glycyrrhizic acid (GA) is the main active component of the licorice root, which has been known in traditional medicine since the ancient times. It is a molecule composed of a hydrophilic part, two glucuronic acid molecules, and a hydrophobic part, glycyrrhetinic acid. GA, when subjected to acid hydrolysis, releases 18β- and 18α-glycyrrhetinic acids. Glycyrrhetinic acid is most responsible for the pharmacological activities of licorice. GA has been reported to have multiple therapeutic properties: anti-viral, anti-inflammatory, antitumor, antimicrobial and hepatoprotective. Different approaches have revealed similar anti-inflammatory mechanisms of action of GA, such as the inhibition of translocation of nuclear factor-κB (NF-κB) and suppression of Tumour Necrosis Factor alpha (TNF-α) and interleukins. In this sense, several in vitro and in vivo studies have described the use of GA in the prevention and treatment of several complications, especially microbial/viral infection, and as a novel chemo-preventive agent for liver injury. Recent studies postulated that GA nanoparticles (GANPs) can be a promising strategy for the treatment of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infections. This mini-review summarizes the pharmacological activities of GA and its beneficial effects against various health problems and provides perspectives on the development of versatile nanoplatforms to overcome some limiting physicochemical properties and for enhancing the therapeutic benefits of GA.

2013 ◽  
Vol 41 (04) ◽  
pp. 927-943 ◽  
Author(s):  
Sushruta Koppula ◽  
Wan-Jae Kim ◽  
Jun Jiang ◽  
Do-Wan Shim ◽  
Na-Hyun Oh ◽  
...  

Carpesium macrocephalum (CM) Fr. et Sav. (Compositae) has been used in Chinese folk medicine as an analgesic, hemostatic, antipyretic, and to suppress inflammatory conditions. In the present study we aimed to provide scientific evidence for the anti-inflammatory properties of CM extract and evaluate the intrinsic mechanisms involved in both in vitro and in vivo experimental models. In in vitro findings, CM significantly inhibited the LPS-stimulated release of proinflammatory mediators such as nitric oxide, tumor necrosis factor-alpha, prostaglandin E2, and interleukin-6 in RAW264.7 macrophages in a concentration-dependent fashion. The attenuation of inflammatory responses in LPS-activated RAW264.7 cells by CM was closely associated with the suppression of nuclear factor-kappa B (NF-κB) phosphorylation, IκB-α degradation, and phosphorylation of Akt. CM treatment also attenuated the phosphorylation of STAT through TRIF dependent pathways in LPS-activated RAW264.7 cells. In vivo studies revealed that CM extract concentration dependently suppressed the acetic acid-induced vascular permeability in mice. Considering the data obtained regulation of multiple signaling mechanisms involving TRIF and Akt/NF-κB pathways might be responsible for the potent anti-inflammatory action of CM, substantiating its traditional use in inflammatory diseases.


Author(s):  
Saloomeh Fouladi ◽  
Mohsen Masjedi ◽  
Mazdak Ganjalikhani Hakemi ◽  
Nahid Eskandari

Allergic asthma is the most common type of allergy which have become increasingly prevalent in all around the world. Airway eosinophilic inflammation is a major feature of allergic asthma. Glycyrrhiza uralensis (licorice) is one of the regular herbs in traditional Chinese medicine (TCM) as it has many effects on the immune system such as anti-inflammatory and immune regulatory activity; antiviral and antitumor effects. This review focuses on the "licorice” components, mainly glycyrrhizic acid (GA) and derivatives structure that evaluate its effects on the allergic asthma. We performed searching articles in Pubmed, Web of Science, and Scopus data bank from 1990 to 2017. The search syntax were: "glycyrrhizin" OR " glycyrrhizic acid" OR " glycyrrhizinic acid" OR" glycyrrhiza glabra" OR " liquorice root" OR "G. glabra" OR "glycyrrhizic Acid" AND "allergic asthma" OR "bronchial asthma" OR "asthma, bronchial" OR "airway hyper-responsiveness" OR "airway inflammation".   Several molecular mechanisms and inflammatory mediators may possibly be responsible for efficacy of glycyrrhizin. Some in vitro studies indicated to the fact that possible mechanisms of anti-inflammatory effects could be through reduction of pro-inflammatory mediator's synthesis that motivates eosinophil, basophils and mast cells to release cytokines for the differentiation of T helper cells into Th2 cells to secrete interleukins. Furthermore, some transcription factors such as NF-κB, STAT6 and HDAC2 go between modulations of anti-asthmatic effects. The last but not the least it can be said that glycyrrhizin is potentially a good herbal drug with the lower most adverse effects for asthma treatment.


2020 ◽  
Vol 26 ◽  
Author(s):  
Shaik Ibrahim Khalivulla ◽  
Arifullah Mohammed ◽  
Kokkanti Mallikarjuna

Background: Diabetes is a chronic disease affecting a large population worldwide and stands as one of the major global health challenges to be tackled. According to World Health Organization, about 400 million are having diabetes worldwide and it is the seventh leading cause of deaths in 2016. Plant based natural products had been in use from ancient time as ethnomedicine for the treatment of several diseases including diabetes. As a result of that, there are several reports on plant based natural products displaying antidiabetic activity. In the current review, such antidiabetic potential compounds reported from all plant sources along with their chemical structures are collected, presented and discussed. This kind of reports are essential to pool the available information to one source followed by statistical analysis and screening to check the efficacy of all known compounds in a comparative sense. This kind of analysis can give rise to few numbers of potential compounds from hundreds, whom can further be screened through in vitro and in vivo studies, and human trails leading to the drug development. Methods: Phytochemicals along with their potential antidiabetic property were classified according to their basic chemical skeleton. The chemical structures of all the compounds with antidiabetic activities were elucidated in the present review. In addition to this, the distribution and their other remarkable pharmacological activities of each species is also included. Results: The scrutiny of literature led to identification of 44 plants with antidiabetic compounds (70) and other pharmacological activities. For the sake of information, the distribution of each species in the world is given. Many plant derivatives may exert antidiabetic properties by improving or mimicking the insulin production or action. Different classes of compounds including sulfur compounds (1-4), alkaloids (5-11), phenolic compounds (12-17), tannins (18-23), phenylpropanoids (24-27), xanthanoids (28-31), amino acid (32), stilbenoid (33), benzofuran (34), coumarin (35), flavonoids (36-49) and terpenoids (50-70) were found to be active potential compounds for antidiabetic activity. Of the 70 listed compounds, majorly 17 compounds are from triterpenoids, 13 flavonoids and 7 are from alkaloids. Among all the 44 plant species, maximum number (7) of compounds are reported from Lagerstroemia speciosa followed by Momordica charantia (6) and S. oblonga with 5 compounds. Conclusion: This is the first paper to summarize the established chemical structures of phytochemicals that have been successfully screened for antidiabetic potential and their mechanisms of inhibition. The reported compounds could be considered as potential lead molecules for the treatment of type-2 diabetes. Further, molecular and clinical trials are required to select and establish the therapeutic drug candidates.


2021 ◽  
Vol 14 (12) ◽  
pp. 1248
Author(s):  
Muhammad Waleed Baig ◽  
Humaira Fatima ◽  
Nosheen Akhtar ◽  
Hidayat Hussain ◽  
Mohammad K. Okla ◽  
...  

Exploration of leads with therapeutic potential in inflammatory disorders is worth pursuing. In line with this, the isolated natural compound daturaolone from Datura innoxia Mill. was evaluated for its anti-inflammatory potential using in silico, in vitro and in vivo models. Daturaolone follows Lipinski’s drug-likeliness rule with a score of 0.33. Absorption, distribution, metabolism, excretion and toxicity prediction show strong plasma protein binding; gastrointestinal absorption (Caco-2 cells permeability = 34.6 nm/s); no blood–brain barrier penetration; CYP1A2, CYP2C19 and CYP3A4 metabolism; a major metabolic reaction, being aliphatic hydroxylation; no hERG inhibition; and non-carcinogenicity. Predicted molecular targets were mainly inflammatory mediators. Molecular docking depicted H-bonding interaction with nuclear factor kappa beta subunit (NF-κB), cyclooxygenase-2, 5-lipoxygenase, phospholipase A2, serotonin transporter, dopamine receptor D1 and 5-hydroxy tryptamine. Its cytotoxicity (IC50) value in normal lymphocytes was >20 µg/mL as compared to cancer cells (Huh7.5; 17.32 ± 1.43 µg/mL). Daturaolone significantly inhibited NF-κB and nitric oxide production with IC50 values of 1.2 ± 0.8 and 4.51 ± 0.92 µg/mL, respectively. It significantly reduced inflammatory paw edema (81.73 ± 3.16%), heat-induced pain (89.47 ± 9.01% antinociception) and stress-induced depression (68 ± 9.22 s immobility time in tail suspension test). This work suggests a possible anti-inflammatory role of daturaolone; however, detailed mechanistic studies are still necessary to corroborate and extrapolate the findings.


2019 ◽  
Vol 156 (6) ◽  
pp. S-623
Author(s):  
Julia B. Krajewska ◽  
Jakub Wlodarczyk ◽  
Przemyslaw Taciak ◽  
Remigiusz Szczepaniak ◽  
Jakub Fichna

2011 ◽  
Vol 63 (5) ◽  
pp. 679-687 ◽  
Author(s):  
Chang Hwa Jung ◽  
Jeong-Hyun Kim ◽  
Ji Hye Kim ◽  
Joo Hee Chung ◽  
Han-Seok Choi ◽  
...  

ACS Omega ◽  
2019 ◽  
Vol 4 (13) ◽  
pp. 15660-15664
Author(s):  
Junichi Nagata ◽  
Hiroyuki Yokodera ◽  
Goki Maeda

mBio ◽  
2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Xiao Wang ◽  
Mikael Sjölinder ◽  
Yumin Gao ◽  
Yi Wan ◽  
Hong Sjölinder

ABSTRACTNeisseria meningitidiscolonizes the nasopharyngeal mucosa of healthy populations asymptomatically, although the bacterial surface is rich in motifs that activate the host innate immunity. What determines the tolerant host response to this bacterium in asymptomatic carriers is poorly understood. We demonstrated that the conserved meningococcal surface protein NhhA orchestrates monocyte (Mo) differentiation specifically into macrophage-like cells with a CD200Rhiphenotype (NhhA-Mφ). In response to meningococcal stimulation, NhhA-Mφ failed to produce proinflammatory mediators. Instead, they upregulated interleukin-10 (IL-10) and Th2/regulatory T cell (Treg)-attracting chemokines, such as CCL17, CCL18, and CCL22. Moreover, NhhA-Mφ were highly efficient in eliminating bacteria. Thein vivovalidity of these findings was corroborated using a murine model challenged withN. meningitidissystematically or intranasally. The NhhA-modulated immune response protected mice from septic shock; Mo/Mφ depletion abolished this protective effect. Intranasal administration of NhhA induced an anti-inflammatory response, which was associated withN. meningitidispersistence at the nasopharynx.In vitrostudies demonstrated that NhhA-triggered Mo differentiation occurred upon engaged Toll-like receptor 1 (TLR1)/TLR2 signaling and extracellular signal-regulated kinase (ERK) and Jun N-terminal protein kinase (JNK) activation and required endogenously produced IL-10 and tumor necrosis factor alpha (TNF-α). Our findings reveal a strategy that might be adopted byN. meningitidisto maintain asymptomatic nasopharyngeal colonization.IMPORTANCENeisseria meningitidisis an opportunistic human-specific pathogen that colonizes the nasopharyngeal mucosa asymptomatically in approximately 10% of individuals. Very little is known about how this bacterium evades immune activation during the carriage stage. Here, we observed thatN. meningitidis, via the conserved surface protein NhhA, skewed monocyte differentiation into macrophages with a CD200Rhiphenotype. Bothin vivoandin vitrodata demonstrated that these macrophages, upon meningococcal infection, played an important role in forming a homeostatic immune microenvironment through their capacity to eliminate invading bacteria and to generate anti-inflammatory mediators. This work provides novel insight into the mechanisms underlying the commensal persistence ofN. meningitidis.


2017 ◽  
Vol 117 (02) ◽  
pp. 401-414 ◽  
Author(s):  
Weixin Xiong ◽  
Xiaoqun Wang ◽  
Daopeng Dai ◽  
Bao Zhang ◽  
Lin Lu ◽  
...  

SummaryWe showed previously that reduced level of vasostatin-2 (VS-2) correlates to the presence and severity of coronary artery disease. In this study, we aimed to figure out the role of chromogranin A (CGA) derived VS-2 in the development of atherosclerosis and monocyte/macrophage recruitment. Apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet exhibited attenuated lesion size by 65 % and 41 % in En face and aortic root Oil red O staining, MOMA-2 positive area by 64 %, respectively, in VS-2 treatment group compared with PBS group. Proinflammatory cytokines tumour necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) were all remarkably reduced in aortic tissues after VS-2 treatment. Mechanistically, in adhesion assay using intravital microscopy in vivo, VS-2 suppressed the number of leukocytes adhering to the wall of apoE-/- mice mesenteric arteries. In chemotactic assay, flow cytometry analysis of peritoneal lavage exudate from C57BL/6 mice showed VS-2 significantly decreased the recruiment number of inflammatory monocytes/macrophages in a thioglycollate-induced peritonitis model. Furthermore, fewer fluorescent latex beads labelled Ly-6Chi monocytes accumulated in aortic sinus lesions of apoE-/- mice after VS-2 treatment. In addition, according to the microarray of human monocyte/macrophage, we found VS-2 stimulation caused a dose-dependent decrease of Rac1 expression and inactivation of Pak1 in mice primary monocytes as well as THP-1 cells and inhibited MCP-1/CCL-5 induced transmigration in vitro. In conclusion, the Chromogranin A-derived VS-2 attenuates atherosclerosis in apoE-/- mice and, in addition to its anti-inflammatory property, also acts as an inhibitor in monocyte/macrophage recruitment.Supplementary Material to this article is available online at www.thrombosis-online.com.


Sign in / Sign up

Export Citation Format

Share Document