scholarly journals The Needed Features of Connected and Automated Vehicles to Prevent Passenger Car Crashes Caused by Driving Errors

2021 ◽  
Vol 1 (2) ◽  
pp. 370-386
Author(s):  
Roni Utriainen ◽  
Markus Pöllänen

Connected and automated vehicles (CAVs) can enhance traffic safety considerably. However, as CAVs are currently under development, the safety impact cannot be assessed directly. In this study, driver-managed passenger car crashes with fatalities in Finland were investigated qualitatively to evaluate the needed features of the CAVs to avoid these crashes. The focus was on single-car crashes and collisions between passenger cars, in which the immediate risk factor was a driving error (n = 48). Most of the analysed crashes (33 of 48) were due to loss of control with typically adverse weather or road conditions. To avoid these crashes, a CAV should be able to adjust its speed according to the conditions. In 13 of 48 crashes, the car was under control prior to the crash. A reliable capability to recognize other road users is an important CAV feature, because observational errors were common in these cases. In addition, communication between the vehicles could assist in avoiding intersection crashes and crashes caused by a sudden change in weather conditions. This study increases knowledge on crashes related to driving errors and the needed features of CAVs to avoid these crashes. In particular, CAVs’ feature to adjust the speed is important, because cases of loss of control in adverse weather or road conditions were typical events.

2019 ◽  
Vol 11 (11) ◽  
pp. 3176 ◽  
Author(s):  
António Lobo ◽  
Sara Ferreira ◽  
Isabel Iglesias ◽  
António Couto

Most previous studies show that inclement weather increases the risk of road users being involved in a traffic crash. However, some authors have demonstrated a little or even an opposite effect, observed both on crash frequency and severity. In urban roads, where a greater number of conflict points and heavier traffic represent a higher exposure to risk, the potential increase of crash risk caused by adverse weather deserves a special attention. This study investigates the impact of meteorological conditions on the frequency of road crashes in urban environment, using the city of Porto, Portugal as a case study. The weather effects were analyzed for different types of crashes: single-vehicle, multi-vehicle, property-damage-only, and injury crashes. The methodology is based on negative binomial and Poisson models with random parameters, considering the influence of daily precipitation and mean temperature, as well as the lagged effects of the precipitation accumulated during the previous month. The results show that rainy days are more prone to the occurrence of road crashes, although the past precipitation may attenuate such effect. Temperatures below 10 °C are associated with higher crash frequencies, complying with the impacts of precipitation in the context of the Portuguese climate characteristics.


2020 ◽  
Vol 101 (11) ◽  
pp. E1914-E1923
Author(s):  
Curtis L. Walker ◽  
Brenda Boyce ◽  
Christopher P. Albrecht ◽  
Amanda Siems-Anderson

AbstractInnovative technologies that support implementation of automated vehicles continue to develop at a rapid pace. These advances strive to increase efficiency and safety throughout the global transportation network. One important challenge to these emergent technologies that remains underappreciated is how the vehicles will perform in adverse weather. Each year, weather-related vehicular crashes account for approximately 21% of all highway crashes in the United States. These crashes result in over 5,300 fatalities, injure over 418,000 people, and cost billions of dollars in insurance claims, liability, emergency services, congestion delays, rehabilitation, and environmental damage annually. Automated vehicles have the potential to significantly mitigate these statistics; however, public, private, and academic partnerships between the meteorological and transportation communities must be established to develop solutions to weather impacts now. To date, such interactions have been sparse and largely contribute to a lack of awareness in how these two communities may collaborate together. The purpose of this manuscript is to call the meteorological community to action and proactive engagement with the transportation community. A secondary goal is to make the transportation community aware of the advantages of teaming with the weather enterprise. Automated vehicles will not only increase travel safety, but also have benefits to the meteorological community through increasing availability of high-resolution surface data observations. The future challenges of these emergent technologies in the context of road weather implications focus on vehicle situational awareness and technological sensing capability in all weather conditions, and transforming how drivers and vehicles are informed of weather threats beyond sensing capabilities.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 137
Author(s):  
Hyuk-Jae Roh ◽  
Furqan Bhat ◽  
Prasanta Sahu ◽  
Satish Sharma ◽  
Babak Mehran ◽  
...  

This paper evaluates the effect of inclement weather conditions on the travel demand for three classes of vehicles for a primary highway in the province of Alberta, Canada. The demand variables are passenger cars, trucks, and total traffic. It is well known from previous studies that adverse weather conditions such as low temperatures and heavy snowfall cause variation in traffic flow patterns. A winter weather model, based on the dummy variable regression model, was developed to quantify the variations in traffic volume due to snowfall and temperature changes. To establish the relationships, vehicular data was collected from six weigh-in-motion (WIM) sites, and the weather data associated with the WIM sites was collected from nearby weather stations. The study revealed that the variation in truck traffic, due to inclement weather conditions, was insignificant compared to variation in passenger car traffic. This study also investigated the temporal transferability of the developed winter weather model to test if a model can be applied irrespective of the time when it was developed. In addition, an attempt was made to check if the model coefficients could be optimized differently for different classes of traffic for estimating correct traffic variations. To evaluate transferability, the performance of both dummy variable regression and naive (without dummy variables) models was investigated. The results revealed that the dummy variable regression models show better performance for passenger car traffic and total traffic and naive winter weather models give better results for truck traffic.


Safety ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 57 ◽  
Author(s):  
Pavlos Tafidis ◽  
Ali Pirdavani ◽  
Tom Brijs ◽  
Haneen Farah

Automated vehicles (AVs) are expected to assist in decreasing road traffic fatalities, particularly among passenger cars. However, until now limited research has been conducted on how they will impact the safety of vulnerable road users (VRUs) (i.e., cyclists and pedestrians). Therefore, there is a clear need to start taking into account the interactions between AVs and VRUs as an integrated element of the transport network, especially in urban areas where they are dominant. The objective of this study is to verify whether the anticipated implementation of AVs can actually improve cyclists’ safety. For this purpose, the microscopic traffic flow simulation software PTV Vissim combined with the surrogate safety assessment model (SSAM) were utilized. The road network used for this analysis was generated based on a real study case in a medium-sized city in Belgium, where narrow streets in the city center are shared on many occasions between vehicles and cyclists. The findings of the analysis show a notable reduction in the total number of conflicts between cars, but also between cars and cyclists, compared to the current situation, assuming a 100% market penetration scenario for AVs. Moreover, the severity level of conflicts also decreased as a result of the lack of human-driven vehicles in the traffic streams.


Author(s):  
V. Ravlyuk ◽  
Y. Derevianchuk ◽  
S. Pohorielov

A set of theoretical scientific researches is carried out in the work, which proves that with the use of different types of brake pads in passenger cars some elements of the typical design of the mechanical brake system need to be modernized. Analytical calculations of the brake lever transmission of passenger cars are performed on the basis of the 2D scheme-model. Due to this, ways to improve the most important elements of lever transmission in passenger cars under the conditions of composite pads are proposed. The analysis of the forces acting in the typical design of the lever transmission of a passenger car for different types of pads is performed. The strength of important elements of the mechanical brake system is calculated by applying the finite element method. It is proposed to use the capabilities of the software package Femap Siemens PLM Software, which allows you to optimize the elements of the mechanical system of passenger cars. An example of topological optimization of some elements of brake lever transmission of a passenger car is given. By improving the elements of the mechanical brake system for the use of composite pads in passenger cars, greatly simplifies their design, facilitates maintenance and repair, also reduces the weight of the system as a whole and cost and significantly increases the level of traffic safety.


Author(s):  
Nataliia Kharytonova ◽  
Olha Mykolaienko ◽  
Tetyana Lozova

Greening of roads contributes to the protection of roads and their elements from influence of adverse weather and climatic factors; it includes the measures for improvement and landscaping of roads, ensures the protection of roadside areas from transport pollution, provides visual orientation of drivers. The solution of these issues will ensure creation and maintenance of safe and comfortable conditions for travelers. Green plantings in the right-of-way road area include woody, bushy, flower and grass vegetation of natural and artificial origin. For proper operation of public roads and satisfaction of other needs of the industry, there may be the need in removing the greenery. The reason for the removal of greenery in the right-of-way road area may be due to the following factors: construction of the architectural object, widening of the motor road, repair works in the security zone of overhead power lines, water supply, drainage, heating, telecommunications facilities, cutting of hazardous, dry and fautal trees, as well as self-grown and brushwood trees with a root neck diameter not exceeding 5 cm, elimination of the consequences of natural disasters and emergencies. The removal of plantations in the right-of-way area is executed in order to ensure traffic safety conditions and to improve the quality of plantations composition and their protective properties. Nowadays, in Ukraine there is no clear procedure for issuing permits for removing of such plantations. In order to resolve this issue, there is a need in determining the list of regulations in the area of forest resources of Ukraine and, if needed, the list of regulatory acts that have to be improved; to prepare a draft of the regulatory legal act that would establish the procedure of plantations cutting, the methodology of their condition determination, recovery costs determination, the features of cutting. Keywords: plantations, cutting, right-of-way, woodcutting permit, order.


Author(s):  
Alexander Bigazzi ◽  
Gurdiljot Gill ◽  
Meghan Winters

Assessments of interactions between road users are crucial to understanding comfort and safety. However, observers may vary in their perceptions and ratings of road user interactions. The objective of this paper is to examine how perceptions of yielding, comfort, and safety for pedestrian interactions vary among observers, ranging from members of the public to road safety experts. Video clips of pedestrian interactions with motor vehicles and bicycles were collected from 11 crosswalks and shown to three groups of participants (traffic safety experts, an engaged citizen advisory group, and members of the general public) along with questions about yielding, comfort, and risk of injury. Experts had similar views of yielding and comfort to the other two groups, but a consistently lower assessment of injury risk for pedestrians in the study. Respondent socio-demographics did not relate to perceptions of yielding, comfort, or risk, but self-reported travel habits did. Respondents who reported walking more frequently rated pedestrian comfort as lower, and respondents who reported cycling more frequently rated risk as lower for pedestrian interactions with both motor vehicles and bicycles. Findings suggest small groups of engaged citizens can provide useful information about public perspectives on safety that likely diverge from expert assessments of risk, and that sample representation should be assessed in relation to travel habits rather than socio-demographics.


Sign in / Sign up

Export Citation Format

Share Document