scholarly journals Monitoring the Extragalactic High Energy Sky

Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Jean-Philippe Lenain

Blazars are jetted active galactic nuclei with a jet pointing close to the line of sight, hence enhancing their intrinsic luminosity and variability. Monitoring these sources is essential in order to catch them flaring and promptly organize follow-up multi-wavelength observations, which are key to providing rich data sets used to derive e.g., the emission mechanisms at work, and the size and location of the flaring zone. In this context, the Fermi-LAT has proven to be an invaluable instrument, whose data are used to trigger many follow-up observations at high and very high energies. A few examples are illustrated here, as well as a description of different data products and pipelines, with a focus given on FLaapLUC, a tool in use within the H.E.S.S. collaboration.

Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 42
Author(s):  
Claudia M. Raiteri ◽  
Massimo Villata

Active galactic nuclei come in many varieties. A minority of them are radio-loud, and exhibit two opposite prominent plasma jets extending from the proximity of the supermassive black hole up to megaparsec distances. When one of the relativistic jets is oriented closely to the line of sight, its emission is Doppler beamed and these objects show extreme variability properties at all wavelengths. These are called “blazars”. The unpredictable blazar variability, occurring on a continuous range of time-scales, from minutes to years, is most effectively investigated in a multi-wavelength context. Ground-based and space observations together contribute to give us a comprehensive picture of the blazar emission properties from the radio to the γ-ray band. Moreover, in recent years, a lot of effort has been devoted to the observation and analysis of the blazar polarimetric radio and optical behaviour, showing strong variability of both the polarisation degree and angle. The Whole Earth Blazar Telescope (WEBT) Collaboration, involving many tens of astronomers all around the globe, has been monitoring several blazars since 1997. The results of the corresponding data analysis have contributed to the understanding of the blazar phenomenon, particularly stressing the viability of a geometrical interpretation of the blazar variability. We review here the most significant polarimetric results achieved in the WEBT studies.


1989 ◽  
Vol 134 ◽  
pp. 199-200
Author(s):  
R. J. V. Brissenden ◽  
I. R. Tuohy ◽  
G. V. Bicknell ◽  
R. A. Remillard ◽  
D. A. Schwartz

A sample of Active Galactic Nuclei (AGN) have been discovered during a program to identify the optical counterparts of X-ray sources detected by the Modulation Collimator experiment of the High Energy Astronomy Observatory-1 (HEAO-1). UV-excess techniques were used to identify the X-ray sources (Remillard et al. 1986) and the details of the identifications are given elsewhere (Remillard et al. 1988, Brissenden et al. 1988). We report here the preliminary results of a multi-wavelength study of these new AGN.


2019 ◽  
Vol 629 ◽  
pp. A16 ◽  
Author(s):  
Johannes Buchner ◽  
Murray Brightman ◽  
Kirpal Nandra ◽  
Robert Nikutta ◽  
Franz E. Bauer

We present a unification model for a clumpy obscurer in active galactic nuclei (AGN) and investigate the properties of the resulting X-ray spectrum. Our model is constructed to reproduce the column density distribution of the AGN population and cloud eclipse events in terms of their angular sizes and frequency. We developed and released a generalised Monte Carlo X-ray radiative transfer code, XARS, to compute X-ray spectra of obscurer models. The geometry results in strong Compton scattering, causing soft photons to escape also along Compton-thick sight lines. This makes our model spectra very similar to our TORUS previous model. However, only if we introduce an additional Compton-thick reflector near the corona, we achieve good fits to NuSTAR spectra. This additional component in our model can be interpreted as part of the dust-free broad-line region, an inner wall or rim, or a warped disk. It cannot be attributed to a simple disk because the reflector must simultaneously block the line of sight to the corona and reflect its radiation. We release our model as an Xspec table model and present corresponding CLUMPY infrared spectra, paving the way for self-consistent multi-wavelength analyses.


1986 ◽  
Vol 119 ◽  
pp. 395-398
Author(s):  
Sanjay M. Wagh ◽  
N. Dadhich

Using the fact that the efficiency of the revived (Wagh et al 1985) Penrose process of energy extraction from black holes immersed in electromagnetic fields can be very high (Parthasarathy et al, 1986) we show that this process can comfortably power the ‘central engine’ in Active Galactic Nuclei. The microphysical Penrose process energized particles will be ultrarelativistic in the asymptotic frame. Hence the kinematical analysis of escaping photons by Piran and Shaham (1977) will be a good approximation to the kinematics of these particles. From this analysis one expects the energized particles to emerge within an angle∼ 40° above and below the equatorial plane. These energetic particles, which are collimated in the funnel of an accretion disk and further on by the magnetic field, then, form supersonic, relativistic, bilateral jets. The relativistic Y factor for such jets can be expected to be ∼ 2 since these ultrarelativistic particles will effectively mimick radiation in ‘dragging’ the matter already injected inside the funnel. Various implications of high energy extraction efficiency are illustrated.


2011 ◽  
Vol 01 ◽  
pp. 151-156
Author(s):  
FENG-YIN CHANG ◽  
PISIN CHEN ◽  
GUEY-LIN LIN ◽  
ROBERT NOBLE ◽  
RICHARD SYDORA

Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultra high energies. In this paper we present the relativistic MPWA theory and confirm such a concept via the plasma simulation. Invoking Active Galactic Nuclei (AGN) as the site, we show that MPWA production of ultra high energy cosmic rays (UHECR) beyond ZeV (1021 eV) is possible.


2016 ◽  
Vol 12 (S324) ◽  
pp. 11-18
Author(s):  
Elina Lindfors

AbstractActive galactic nuclei, hosting supermassive black holes and launching relativistic jets, are the most numerous objects on the gamma-ray sky. At the other end of the mass scale, phenomena related to stellar mass black holes, in particular gamma-ray bursts and microquasars, are also seen on the gamma-ray sky. While all of them are thought to launch relativistic jets, the diversity even within each of these classes is enormous. In this review, I will discuss recent very high energy gamma-ray results that underline both the similarity of the black hole systems, as well as their diversity.


2008 ◽  
Vol 17 (09) ◽  
pp. 1577-1584
Author(s):  
J.-P. LENAIN ◽  
C. BOISSON ◽  
H. SOL

M 87 is the first extragalactic source detected in the TeV γ-ray domain that is not a blazar, its large scale jet not being aligned to the line of sight. We present here a multi-blob synchrotron self-Compton model accounting explicitly for large viewing angles and moderate Lorentz factors as inferred from magnetohydrodynamic simulations of jet formation, motivated by the detection of M 87 at very high energies (VHE; E > 100 GeV ). Predictions are presented for the very high-energy emission of active galactic nuclei with extended optical or X-ray jet, which could be misaligned blazars but still show some moderate beaming. We include predictions for 3C 273, Cen A and PKS 0521–36.


2002 ◽  
Vol 19 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Tadashi Kifune

AbstractEvidence of TeV γ-ray emission has been found for only a handful of active galactic nuclei, with detailed investigations limited to the blazars Mrk 421 and Mrk 501. TeV γ-ray astronomy, as the highest energy band, provides important information that is hard to obtain from longer wavelength electromagnetic radiation. The current status of TeV γ-ray studies of active galactic nuclei is summarized and our understanding of the high energy phenomena taking place in active galactic nuclei is outlined, with the prospects for future TeV γ-ray observations also considered.


Author(s):  
V. Ponomarenko ◽  
А. Simon ◽  
V. Vasylenko ◽  
I. Izvekova ◽  
О. Baransky

Active galactic nuclei (AGN) are a source of very high energies. Blazars are a subclass of active galactic nuclei that can be observed in the optical spectral range. The aim of the study is some BL Lacertae type blazars, which are characterized by a non-emission optical spectrum and exhibit brightness variations at all wavelengths. The results of systematical monitoring of selected objects from the CTA (Cherenkov Telescope Array) optical follow up list, started in January 2018 are presented. The observations are carried out with the AZT-8 (D = 70 cm, F = 2.8 m) telescope of the observation station Lisnyky of Taras Shevchenko National University of Kyiv. In 2018 the telescope AZT-8 was included in the list of supporting instruments in the CTA consortium. The AZT-8 equipped with the PL4710-1-BB-E2V CCD (1027×1048 pixels, 13×13 µm/pixel, scale is 0.95 “/pixel, field of view is 16.2 angular minutes) and broadband Johnson/Bessel UBVRI filters. For processing the software Maxim DL was used. During processing accounting of substrate (bias), dark current, flat-field were taken into account. The fluxes of energy from objects of research with the help of standard stars has been turned into visible stellar magnitudes. Light curves for four objects: 1ES 1011+496, PKS 1222+216, 1ES 1426+428, PKS 1510-089 were plotted. Variability of color indexes with time was investigated. In addition, we determined the variability amplitude and tested all these objects for Intraday Variations (IDV), Short (STV) and Long term variability (LTV) where it was possible. A short-term brightness change (STV) with an amplitude of 0.5 to 1 in all filters (UBVRI) of the Johnson/Bessel system for AGN 1ES 1011+496, PKS 1510-089 was determined. For objects 1ES 1426+428 and PKS 1222+216, the brightness variations do not exceed the total error (instrumental and methodical). The total error is ∆Σ ≈ 0.060.1 magnitude.


Sign in / Sign up

Export Citation Format

Share Document