scholarly journals Marine Biopolymer Dynamics, Gel Formation, and Carbon Cycling in the Ocean

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 136
Author(s):  
Pedro Verdugo

Much like our own body, our planet is a macroscale dynamic system equipped with a complex set of compartmentalized controls that have made life and evolution possible on earth. Many of these global autoregulatory functions take place in the ocean; paramount among those is its role in global carbon cycling. Understanding the dynamics of organic carbon transport in the ocean remains among the most critical, urgent, and least acknowledged challenges to modern society. Dissolved in seawater is one of the earth’s largest reservoirs of reduced organic carbon, reaching ~700 billion tons. It is composed of a polydisperse collection of marine biopolymers (MBP), that remain in reversible assembled↔dissolved equilibrium forming hydrated networks of marine gels (MG). MGs are among the least understood aspects of marine carbon dynamics. Despite the polymer nature of this gigantic pool of material, polymer physics theory has only recently been applied to study MBP dynamics and gel formation in the ocean. There is a great deal of descriptive phenomenology, rich in classifications, and significant correlations. Still missing, however, is the guide of robust physical theory to figure out the fundamental nature of the supramolecular interactions taking place in seawater that turn out to be critical to understanding carbon transport in the ocean.

Author(s):  
Robert Hall ◽  
Jennifer Tank ◽  
Michelle Baker ◽  
Emma Rosi-Marshall ◽  
Michael Grace ◽  
...  

Primary production and respiration are core functions of river ecosystems that in part determine the carbon balance. Gross primary production (GPP) is the total rate of carbon fixation by autotrophs such as algae and higher plants and is equivalent to photosynthesis. Ecosystem respiration (ER) measures rate at which organic carbon is mineralized to CO2 by all organisms in an ecosystem. Together these fluxes can indicate the base of the food web to support animal production (Marcarelli et al. 2011), can predict the cycling of other elements (Hall and Tank 2003), and can link ecosystems to global carbon cycling (Cole et al. 2007).


2021 ◽  
Author(s):  
Julie Rotschi ◽  
Isabelle Domaizon ◽  
Irene Gregory-Eaves ◽  
Andrea Lami ◽  
Cécilia Barouillet ◽  
...  

<p>Although lakes only represent a small fraction of the surface of the earth, a growing number of studies have shown that they play a critical role in the global carbon cycle (<sup>[i],[ii],[iii]</sup>), mediating carbon transfer from land to the atmosphere, and burying organic carbon in their sediments. The magnitude and temporal variability of carbon burial is, however, poorly constrained, and the degree to which lake productivity has influenced lake carbon cycling has not been systematically assessed (<sup>[iv]</sup>). Here, trends in total organic carbon (TOC) sequestration and primary production are reconstructed from sediment records for the last 300 years in four perialpine deep lakes. We rely on High Performance Liquid Chromatography (HPLC) and geochemical proxies to investigate changes in algal communities. Then, we evaluate the temporal contribution of algal assemblages to the variability of lake primary production, as well as the potential effects on carbon sequestration magnitude. Other contributors to carbon sequestration derived from the IPER RETRO project (2009-2013) are also investigated, such as past oxygen conditions, lake thermal structure or allochthonous supplies of carbon. Our results suggest that despite reoligotrophication of all lakes (e.g., decrease in dissolved phosphorus concentration in water column and relative restoration of diatoms communities (<sup>[v]</sup>)) over the last 3 decades, TOC in lakes sediments is still increasing in the sediment. The study of algal pigments suggests that changes in algal assemblages and oxygen conditions could be responsible of this persistent increase in carbon burial. Future development (e.g., DNA analysis) should provide more detail on algal communities to validate these results.</p><div><br><div> <p>[i] J. J. Cole et al., ‘Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget’, Ecosystems 10, no. 1 (May 2007): 172–85, https://doi.org/10.1007/s10021-006-9013-8.</p> </div> <div> <p>[ii] Tom J. Battin et al., ‘Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks’, Nature Geoscience 1, no. 2 (February 2008): 95–100, https://doi.org/10.1038/ngeo101.</p> </div> <div> <p>[iii] Lars J. Tranvik et al., ‘Lakes and Reservoirs as Regulators of Carbon Cycling and Climate’, Limnology and Oceanography 54, no. 6part2 (November 2009): 2298–2314, https://doi.org/10.4319/lo.2009.54.6_part_2.2298.</p> </div> <div> <p>[iv] N. J. Anderson et al., ‘Anthropogenic Alteration of Nutrient Supply Increases the Global Freshwater Carbon Sink’, Science Advances 6, no. 16 (April 2020): eaaw2145, https://doi.org/10.1126/sciadv.aaw2145.</p> </div> <div> <p>[v] Vincent Berthon et al., ‘Trophic History of French Sub-Alpine Lakes over the Last 150 Years: Phosphorus Reconstruction and Assessment of Taphonomic Biases’, Journal of Limnology 72, no. 3 (September 2013): 34, https://doi.org/10.4081/jlimnol.2013.e34.</p> </div> </div>


2011 ◽  
Vol 108 (1-3) ◽  
pp. 91-107 ◽  
Author(s):  
E. Tipping ◽  
P. M. Chamberlain ◽  
M. Fröberg ◽  
P. J. Hanson ◽  
P. M. Jardine

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Alexandra Schoenle ◽  
Manon Hohlfeld ◽  
Karoline Hermanns ◽  
Frédéric Mahé ◽  
Colomban de Vargas ◽  
...  

AbstractHeterotrophic protists (unicellular eukaryotes) form a major link from bacteria and algae to higher trophic levels in the sunlit ocean. Their role on the deep seafloor, however, is only fragmentarily understood, despite their potential key function for global carbon cycling. Using the approach of combined DNA metabarcoding and cultivation-based surveys of 11 deep-sea regions, we show that protist communities, mostly overlooked in current deep-sea foodweb models, are highly specific, locally diverse and have little overlap to pelagic communities. Besides traditionally considered foraminiferans, tiny protists including diplonemids, kinetoplastids and ciliates were genetically highly diverse considerably exceeding the diversity of metazoans. Deep-sea protists, including many parasitic species, represent thus one of the most diverse biodiversity compartments of the Earth system, forming an essential link to metazoans.


2018 ◽  
Vol 33 (2) ◽  
pp. 96-105 ◽  
Author(s):  
Paul V.R. Snelgrove ◽  
Karline Soetaert ◽  
Martin Solan ◽  
Simon Thrush ◽  
Chih-Lin Wei ◽  
...  
Keyword(s):  

2010 ◽  
Vol 32 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Tae-Hee Lee ◽  
Dong-Seon Kim ◽  
Boo-Keun Khim ◽  
Dong-Lim Choi

Sign in / Sign up

Export Citation Format

Share Document