scholarly journals Precise Genome Editing in Poultry and Its Application to Industries

Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1182
Author(s):  
Jin Se Park ◽  
Kyung Youn Lee ◽  
Jae Yong Han

Poultry such as chickens are valuable model animals not only in the food industry, but also in developmental biology and biomedicine. Recently, precise genome-editing technologies mediated by the CRISPR/Cas9 system have developed rapidly, enabling the production of genome-edited poultry models with novel traits that are applicable to basic sciences, agriculture, and biomedical industry. In particular, these techniques have been combined with cultured primordial germ cells (PGCs) and viral vector systems to generate a valuable genome-edited avian model for a variety of purposes. Here, we summarize recent progress in CRISPR/Cas9-based genome-editing technology and its applications to avian species. In addition, we describe further applications of genome-edited poultry in various industries.

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 799 ◽  
Author(s):  
Masahiro Sato ◽  
Shuji Takabayashi ◽  
Eri Akasaka ◽  
Shingo Nakamura

The recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) systems that occur in nature as microbial adaptive immune systems are considered an important tool in assessing the function of genes of interest in various biological systems. Thus, development of efficient and simple methods to produce genome-edited (GE) animals would accelerate research in this field. The CRISPR/Cas9 system was initially employed in early embryos, utilizing classical gene delivery methods such as microinjection or electroporation, which required ex vivo handling of zygotes before transfer to recipients. Recently, novel in vivo methods such as genome editing via oviductal nucleic acid delivery (GONAD), improved GONAD (i-GONAD), or transplacental gene delivery for acquiring genome-edited fetuses (TPGD-GEF), which facilitate easy embryo manipulation, have been established. Studies utilizing these techniques employed pregnant female mice for direct introduction of the genome-editing components into the oviduct or were dependent on delivery via tail-vein injection. In mice, embryogenesis occurs within the oviducts and the uterus, which often hampers the genetic manipulation of embryos, especially those at early postimplantation stages (days 6 to 8), owing to a thick surrounding layer of tissue called decidua. In this review, we have surveyed the recent achievements in the production of GE mice and have outlined the advantages and disadvantages of the process. We have also referred to the past achievements in gene delivery to early postimplantation stage embryos and germ cells such as primordial germ cells and spermatogonial stem cells, which will benefit relevant research.


2019 ◽  
Vol 101 (1) ◽  
pp. 200-207 ◽  
Author(s):  
Jitka Mucksová ◽  
Markéta Reinišová ◽  
Jiří Kalina ◽  
Barbora Lejčková ◽  
Jiří Hejnar ◽  
...  

Abstract Successful derivation and cultivation of primordial germ cells (PGCs) opened the way to efficient transgenesis and genome editing in the chicken. Furthermore, implantation of male PGCs from non-chicken galliform species into the chicken embryos resulted in cross-species germline chimeras and viable offspring. We have recently improved the PGC technology by demonstrating that chicken male PGCs transplanted into the testes of adult cockerel recipients mature into functional sperms. However, the availability of this orthotopic transplantation for cross-species transfer remains to be explored. Here we tested the capacity of genetically distant male PGCs to mature in the microenvironment of adult testes. We derived PGCs from the Chinese black-bone Silkie and transplanted them into infertile White Leghorn cockerels. Within 15–18 weeks after transplantation, we observed restoration of spermatogenesis in recipient cockerels and production of healthy progeny derived from the transplanted PGCs. Our findings also indicate the possibility of cross-species orthotopic transplantation of PGCs. Thus, our results might contribute to the preservation of endangered avian species and maintaining the genetic variability of the domestic chicken.


Author(s):  
Amreek Singh ◽  
Warren G. Foster ◽  
Anna Dykeman ◽  
David C. Villeneuve

Hexachlorobenzene (HCB) is a known toxicant that is found in the environment as a by-product during manufacture of certain pesticides. This chlorinated chemical has been isolated from many tissues including ovary. When administered in high doses, HCB causes degeneration of primordial germ cells and ovary surface epithelium in sub-human primates. A purpose of this experiment was to determine a no-effect dose of the chemical on the rat ovary. The study is part of a comprehensive investigation on the effects of the compound on the biochemical, hematological, and morphological parameters in the monkey and rat.


1998 ◽  
Vol 69 (10) ◽  
pp. 911-915 ◽  
Author(s):  
Tamao ONO ◽  
Ryohei YOKOI ◽  
Seishi MAEDA ◽  
Takao NISHIDA ◽  
Hirohiko AOYAMA

Sign in / Sign up

Export Citation Format

Share Document