scholarly journals Population Dynamics in Italian Canids between the Late Pleistocene and Bronze Age

Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1409
Author(s):  
Kyriaki Koupadi ◽  
Francesco Fontani ◽  
Marta Maria Ciucani ◽  
Elena Maini ◽  
Sara De Fanti ◽  
...  

Dog domestication is still largely unresolved due to time-gaps in the sampling of regions. Ancient Italian canids are particularly understudied, currently represented by only a few specimens. In the present study, we sampled 27 canid remains from Northern Italy dated between the Late Pleistocene and Bronze Age to assess their genetic variability, and thus add context to dog domestication dynamics. They were targeted at four DNA fragments of the hypervariable region 1 of mitochondrial DNA. A total of 11 samples had good DNA preservation and were used for phylogenetic analyses. The dog samples were assigned to dog haplogroups A, C and D, and a Late Pleistocene wolf was set into wolf haplogroup 2. We present our data in the landscape of ancient and modern dog genetic variability, with a particular focus on the ancient Italian samples published thus far. Our results suggest there is high genetic variability within ancient Italian canids, where close relationships were evident between both a ~24,700 years old Italian canid, and Iberian and Bulgarian ancient dogs. These findings emphasize that disentangling dog domestication dynamics benefits from the analysis of specimens from Southern European regions.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6424 ◽  
Author(s):  
Marta Maria Ciucani ◽  
Davide Palumbo ◽  
Marco Galaverni ◽  
Patrizia Serventi ◽  
Elena Fabbri ◽  
...  

Background The contemporary Italian wolf (Canis lupus italicus) represents a case of morphological and genetic uniqueness. Today, Italian wolves are also the only documented population to fall exclusively within the mitochondrial haplogroup 2, which was the most diffused across Eurasian and North American wolves during the Late Pleistocene. However, the dynamics leading to such distinctiveness are still debated. Methods In order to shed light on the ancient genetic variability of this wolf population and on the origin of its current diversity, we collected 19 Late Pleistocene-Holocene samples from northern Italy, which we analyzed at a short portion of the hypervariable region 1 of the mitochondrial DNA, highly informative for wolf and dog phylogenetic analyses. Results Four out of the six detected haplotypes matched the ones found in ancient wolves from northern Europe and Beringia, or in modern European and Chinese wolves, and appeared closely related to the two haplotypes currently found in Italian wolves. The haplotype of two Late Pleistocene samples matched with primitive and contemporary dog sequences from the canine mitochondrial clade A. All these haplotypes belonged to haplogroup 2. The only exception was a Holocene sample dated 3,250 years ago, affiliated to haplogroup 1. Discussion In this study we describe the genetic variability of the most ancient wolf specimens from Italy analyzed so far, providing a preliminary overview of the genetic make-up of the population that inhabited this area from the last glacial maximum to the Middle Age period. Our results endorsed that the genetic diversity carried by the Pleistocene wolves here analyzed showed a strong continuity with other northern Eurasian wolf specimens from the same chronological period. Contrarily, the Holocene samples showed a greater similarity only with modern sequences from Europe and Asia, and the occurrence of an haplogroup 1 haplotype allowed to date back previous finding about its presence in this area. Moreover, the unexpected discovery of a 24,700-year-old sample carrying a haplotype that, from the fragment here obtained, falls within the canine clade A, could represent the oldest evidence in Europe of such dog-rich clade. All these findings suggest complex population dynamics that deserve to be further investigated based on mitochondrial or whole genome sequencing.


2009 ◽  
Vol 90 (12) ◽  
pp. 2877-2883 ◽  
Author(s):  
Giovanna Carpi ◽  
Luigi Bertolotti ◽  
Sergio Rosati ◽  
Annapaola Rizzoli

Tick-borne encephalitis (TBE) is a severe disease that has been endemic in north-east Italy since 1992. Over the past two decades, there has been an increase in the number of human cases reported in many European countries, including Italy. To assess the current TBE infection risk, questing ticks were collected from known TBE foci, as well as from a site in northern Italy where no human infections have been reported previously. A total of 1739 Ixodes ricinus (1485 nymphs and 254 adults) was collected and analysed for TBEV prevalence by a real-time RT-PCR targeting the 3′ untranslated region. Phylogenetic analyses of the partial envelope gene were conducted on two newly sequenced TBE virus (TBEV) strains and 28 previously published sequences to investigate the genealogical relationships of the circulating TBEV strains. These phylogenetic analyses confirmed a previous report that the European TBEV subtype is the only subtype circulating within the TBE foci in north-east Italy. Interestingly, nucleotide sequence analysis revealed a high degree of divergence (mean 2.54 %) between the TBEV strains recovered in the Italian province of Trento, despite the circulation of a single TBEV subtype. This elevated genetic variability within a single TBE focus may reflect local differences in the long-standing evolutionary dynamics of TBEV at this site relative to previously characterized sites, or more recent and continuous reintroduction of various TBEV strains.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maciej Janiak ◽  
Karol Perlejewski ◽  
Piotr Grabarczyk ◽  
Dorota Kubicka-Russel ◽  
Osvaldo Zagordi ◽  
...  

1990 ◽  
Vol 5 ◽  
pp. 71-79 ◽  
Author(s):  
Maria Ferraris ◽  
Benedetto Sala ◽  
Valeria Scola

2005 ◽  
Vol 78 (2) ◽  
pp. 372-382 ◽  
Author(s):  
Cristiano Scottà ◽  
Loretta Tuosto ◽  
Anna Maria Masci ◽  
Luigi Racioppi ◽  
Enza Piccolella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document